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Abstract. Sensor networks provide virtual snapshots of the physical
world via distributed wireless nodes that can sense in different modalities,
such as acoustic and seismic. Classification of objects moving through
the sensor field is an important application that requires collaborative
signal processing (CSP) between nodes. Given the limited resources of
nodes, a key constraint is to exchange the least amount of information
between them to achieve desired performance. Two main forms of CSP
are possible. Data fusion — exchange of low dimensional feature vectors —
is needed between correlated nodes, in general, for optimal performance.
Decision fusion — exchange of likelihood values — is sufficient between in-
dependent nodes. Decision fusion is generally preferable due to its lower
communication and computational burden. We study CSP of multiple
node measurements for classification, each measurement modeled as a
Gaussian (target) signal vector corrupted by additive white Gaussian
noise. The measurements are partitioned into groups. The signal com-
ponents within each group are perfectly correlated whereas they vary
independently between groups. Three classifiers are compared: the opti-
mal maximum-likelihood classifier, a data-averaging classifier that treats
all measurements as correlated, and a decision-fusion classifier that treats
them all as independent. Analytical and numerical results based on real
data are provided to compare the performance of the three CSP classi-
fiers. Entropy comparison between data- and decision-fusion is also pro-
vided to quantify the lower communication burden in decision fusion.
Our results indicate that the sub-optimal decision fusion classifier, that
is most attractive in the context of sensor networks, is also a robust
choice from a decision-theoretic viewpoint.

1 Introduction

Wireless sensor networks are an emerging technology for monitoring the physical
world with a densely distributed network of wireless nodes [1]. Each node has lim-
ited communication and computation ability and can sense the environment in a
variety of modalities, such as acoustic, seismic, and infra red [1, 2, 3]. A wide va-
riety of applications are being envisioned for sensor networks, including disaster
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relief, border monitoring, condition-based machine monitoring, and surveillance
in battlefield scenarios. Detection and classification of objects moving through
the sensor field is an important task in many envisioned applications. Exchange
of sensor information between different nodes in the vicinity of the object is nec-
essary for reliable execution of such tasks due to a variety of reasons, including
limited (local) information gathered by each node, variability in operating con-
ditions, and node failure. Consequently, development of theory and methods for
collaborative signal processing (CSP) of the data collected by different nodes is
a key research area for realizing the vision of sensor networks.

The CSP algorithms have to be developed under the constraints imposed by
the limited communication and computational abilities of the nodes as well as
their finite battery life. A key goal of CSP algorithms in sensor networks is to
exchange the least amount of data between nodes to attain a desired level of
performance. In this paper, with the above goal in mind, we investigate CSP
algorithms for single-target classification based on multiple acoustic measure-
ments at different nodes. The numerical results presented here are based on real
data collected in the DARPA SensIT program.

Some form of region-based processing is attractive in sensor networks in order
to facilitate CSP between nodes and also for efficient routing of information in
applications involving tracking of moving targets [3]. Typically, the nodes in
the network are partitioned into a number of regions and a manager node is
designated within each region to facilitate CSP between the nodes in the region
and for communication of information from one region to another. Single target
classification and tracking generally involves the following steps [3]:

1. Target detection and data collection. A target is detected in a partic-
ular region which becomes the active region. The detection of a target itself
may involve CSP between nodes. For example, outputs of energy detectors
may be communicated to the manager node to make the final decision. The
nodes within the region that detect the target also collect time series data
in different modalities that is communicated to the manager node for classi-
fication purposes.

2. Target localization. Target detection information (for example, the time of
closest point of approach and energy detector outputs) from different nodes
is used by the manager node to estimate the location of the target.

3. Target location prediction. Location estimates over a period of time are
used by the manager node to predict target location at future time instants.

4. Creation of new potential active regions. When the target gets close
to exiting the current region, the estimates of predicted target location are
used to put new regions on alert for target detection.

5. Determination of new active region. Once the target is detected in
a new region it becomes the new active region. The above four steps are
repeated for target tracking through the sensor field.

In this paper, we are primarily concerned with CSP techniques for combining
the data collected by different nodes for single-target classification within a par-
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ticular active region. However, the basic principles apply to distributed decision
making in sensor networks in general.

There are two main forms of information exchange between nodes dictated
by the statistics of measured signals. If two nodes yield correlated measurements,
data fusion is needed, in general, for optimal performance — exchange of (low-
dimensional) feature vectors that yield sufficient information for desired classi-
fication performance. On the other hand, if two nodes yield independent mea-
surements, decision fusion is sufficient — exchange of likelihood values (scalars)
computed from individual measurements. In general, the measurements would
exhibit a mixture of correlated and independent components and would require a
combination of data and decision fusion between nodes. In the context of sensor
networks, decision fusion is clearly the more attractive choice. First, it imposes
a significantly lower communication burden on the network, compared to data
fusion, since only scalars are transmitted to the manager node [3]. Second, it
also imposes a lower computational burden compared to data fusion since lower
dimensional data has to be jointly processed at the manager node.

In this paper, we investigate the design of CSP classifiers and assess their per-
formance in an idealized abstraction of measurements from multiple nodes. We
consider K = Gng measurements corresponding to a particular event. The K
measurements are split into G groups with ng measurements in each group. The
signal component in the ng measurements in a particular group is identical (per-
fectly correlated), but it varies independently from group to group. We compare
the performance of three classifiers: 1) the optimal maximum-likelihood (ML)
classifier, 2) a sub-optimal (decision-fusion) classifier that treats all the mea-
surements as independent, and 3) a sub-optimal (data-averaging) classifier that
treats all the measurements as perfectly correlated. Our results indicate that the
decision-fusion classifier 1s remarkably robust to the true statistical correlation
between measurements. Thus, the decision-fusion classifier, that is the most at-
tractive choice in view of the computational and communication constraints, is
also a robust choice from a decision-theoretic viewpoint.

2 CSP Classifiers for Multiple Measurements

We consider Gaussian classifiers which assume that the underlying data has
complex circular Gaussian statistics. The notation # ~ CA(u, X') means that
E[#] = p and E[zz"] = ¥ and E[zz?] = 0 (circular assumption). We first
discuss the classifier structure for a single measurement and then generalize it
to multiple measurements.

2.1 Single Measurement Classifier

Consider M target classes. Let @ denote a complex-valued N-dimensional fea-
ture vector corresponding to a detected event. Under hypothesis j = 1,--- /M
(corresponding to j-th target class), ® is modeled as

Hi tx=s4+n,j=1-- M, (0
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where 8 ~ CN(p;, X;) denotes the Gaussian signal component corresponding
to the j-th class, and n ~ CN(0,I) denotes additive white Gaussian noise. A
classifier C' maps the event feature vector @ to one of the target classes. We
assume that all classes are equally likely. Thus, the optimal classifier is the
maximum-likelihood (ML) classifier which takes the form [4]
C(x) =ar max i(x 2
() =arg _max _py(e) @)
where p;(x) denotes the likelihood function for j-th class which takes the fol-
lowing form under the complex Gaussian assumption

1

(e (E D) T ()
N Z; A1) ®

pi(z) = :
In this paper, we assume zero-mean signals so that p; = 0 for all j and, thus,
all information about the targets is contained in the covariance matrices ;. In
practice, X; has to be estimated from available training data. We assume that

tr(X;) (signal energy) is the same for all j.

2.2 Multiple Measurement Classifier

Suppose that we have K measurements (in a given modality), {®1, -, 2k},
from different nodes available to us. We are interested in combining these mea-
surements to achieve improved classification performance. Consider the concate-
nated N K-dimensional feature vector

T T T T
x° :[mlawZJ"'amK] (4)
which has the same form as (1) under different hypotheses except for the larger
number of dimensions. The noise is still white but the signal correlation matrix
under H; can be partitioned as

Y X0 - XMk
Yior Yoo -o- Mok

5= : . : : ()
Yik1 YKo YjKkK

where ¥ pp = E[mkmg] denotes the cross-covariance between the k-th and k’-
th measurements. The optimal classifier operates on ®° and takes the form (2)
with p;(2°) given by (3) by replacing # with ¢ and ¥; with ¥

2.3 A Simple Measurement Model

We now present a model for measurements that is used throughout the paper.
Let K = Gng. Suppose that the signal component of ¢ can be partitioned into
G groups of ng measurements each as

cT:[T T T T T T] (6)

S 317...7317327...732’...7SG7...’8G
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where the signal component of the ng measurements in each group is identical
and it varies independently from group to group. That is, {s1, -+, s8¢} are i.i.d.
according to CN (0, ;) under H;. The noise measurements, on the other hand,
are independent across all measurements. The above signal model can capture
a range of correlation between measurements. For K = G (ng = 1), all the
measurements have independent signal components (no correlation), whereas
for K = ng (G = 1), all the measurements have identical signal components
(maximum correlation). We consider three classifiers based on the above model.

Optimum Classifier There are two sources of classification error: background
noise and the inherent statistical variability in the signals captured by X;’s.
The optimal classifier performs signal averaging within each group to reduce the
noise variance and statistical averaging over the groups to reduce the inherent
signal variations. The optimum classifier operates on the NG dimensional vector
Y $1 wy
Ya sag wg
where y; are obtained by averaging the measurements in each group
1 &
inEZ}ﬂ?(i—nGH:Si%-wi,izl,"',G (8)
]:

Note that w; are i.i.d. CA(0,I/ng) due to signal averaging and s; are i.i.d.
CN (0, ¥;) under H;. It can be shown that the optimal classifier takes the form

Copt(yla e ayG) = argj_mianopt,j (yla e ayG) (9)

=4 )

where the (negative) log-likelihood function I, ;(y) is given by

G
1 _
lopt,j(y) = log| ¥ + I/ng| + & Sy (T + I/ne) 'y
i=1

=log|X; 4+ I/ng| + tr((Z; + I/ng) ' %) (10)

and i’y = é Zlel yiy! is the estimated data correlation matrix of {y;}.
It 1s insightful to consider two limiting cases. First, suppose that K = ng
(G =1 — perfectly correlated measurements). In the limit of large K

A Lo (y) = log| 351+ o1 7y (11)

which shows that noise is completely eliminated and the only remaining source
of error is the inherent statistical variation in the signal. Now, suppose that
K = G (ng = 1 — independent measurements). In the limit of large K

AIm Lope j(y) = log | Zj + I + tr((¥; + I)7' %) (12)
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where ¥, = ¥, + I under H,,. In this case, all statistical variation in the signal
is removed due to ensemble averaging. However, there 1s a bias in the estimated
data correlation (relative to X';) due to noise. Both data averaging (correlated
measurements) and ensemble averaging (uncorrelated measurements) contribute
to improved classifier performance. However, as we will see, ensemble averaging
is more critical in the case of stochastic signals.

Decision-Fusion Classifier The sub-optimal decision-fusion classifier treats
all measurements as independent:

Co (@1, wx) =arg _min Ly (@1, o)

K
1
lay (@) = log | Zj + I| + = Sl (2 + D) ey
i=1
=log|X; + I|+tr((X; +I)71%,) (13)

where ¥, = % Zszl xz;2 is the estimated data correlation matrix of {z;}.
Note that Cop; and Cgs are identical for K = G in the measurement model. Note
also from (13) that the M scalars {& (X, + I)~'x;} for j =1, -+, M need to
be transmitted from the K nodes to the manager node. Thus, C4; imposes a
much smaller communication (and computational) burden on the network since
M < N in general. We consider only soft decision fusion in this paper. Several
other forms, including hard decision fusion, are also possible [5].

Data-Averaging Classifier The data-averaging classifier treats all measure-
ments as correlated. It operates on the average of all measurements

1 & 1 &
yda:K;miIG;yizsda‘Fwda (14)

where 84, ~ CN(0,X;/G) under H; and wgqq ~ CN(0,I/K) in the measure-
ment model. The data-averaging classifier takes the form

Cia(Yaa) = arg _min  lia j(Yaa)

j=1,-,
lia j(Yaa) = log | Z; + I/ K|+ yli(Z; + I/K) ™ yaa. (15)

Note that C,p: and Cy, are identical for K = ng. All K measurements {z;}
have to be communicated to the manager node for the computation of C,,; and
C4q. However, the computational burden of Cy, is lower than that of C,p;.

3 Performance Analysis of the Three Classifiers

We analyze the performance of the three classifiers for M = 2 classes. The analy-
sis for M > 2 is more involved and is the beyond the scope of this paper. Simple



Classification in Sensor Networks 7

union bounds can be obtained for M > 2 via the M = 2 analysis presented
here. We also analyze the asymptotic performance in the limit of large number
of independent measurements and also provide an entropy comparison between
data and decision fusion.

We assess the performance in terms of the average probability of (correct)
detection (P D)

M
. 1
PD;j = P(lj <l , Ym # j|H;), PD= MZ;PD]» (16)
=
and the average probability of false alarm (PF A)
1 < 1 &
PFA; = P(l; <1, i|\Hy) , PFA= —S PFA;. (1
J M_lk_lz];¢] (]< Vm#.ﬂ k) M; J (7)

For M = 2 the above expressions simplify to

PD1:P(11<12|H1)21—PFA2 , PDQ:P(ZQ<11|H2)21—PFA1(18)
PD=1-PFA. (19)

Our analysis is based on a signal model in which the covariance matrices of
different targets are simultaneously diagonalizable. This model is motivated in
the next section and it also simplifies the exposition to gain insight into the
performance of the classifiers.

3.1 Simultaneously Diagonalizable Classes
We assume that all the covariance matrices share the same eigenfunctions
¥, =U0AU" j=1,.- M (20)

where U represents the matrix of common (orthonormal) eigenvectors for all
the classes — the different classes are characterized by the diagonal matrix of
eigenvalues A; = diag(A;[1],- -, A;[N]). One scenario in which this assumption
is approximately valid is when the source signals for different targets can be
modeled as stationary processes over the duration of the detected event. In such
a case, choosing U as a discrete Fourier transform (DFT) matrix would serve as
an approximate set of eigenfunctions [6]. The eigenvalues will then correspond
to samples of the associated power spectral densities (PSD’s). The numerical
results in Section 4 are based on this assumption and rely on experimental data
collected in the SensIT program. Note that given the knowledge of A; in the
measurement model of Section 2.3, a realization for the signal in the ¢-th group,
from the j-th class, can be generated as

si=UA 2z | 2 ~CN(0,1) , i=1,- G, (21)

The same z; realization is used in the #-th group and it changes independently
from group to group. We assume the above signal model and analyze the classi-
fiers in the eigen (Fourier) domain so that {¥;} are replaced with {A;}.
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3.2 Optimal Classifier

The test statistic for the optimal classifier takes the form
~ 1 G ~_1 ~
lopt g (w1, ya) = log| 4|+ = >y’ A wi o Aj=4;+1/ng (22)

where y; are i.i.d. according to CN(O,Zj). Thus, y; can be representated as

Y = /~11/ z; where {z;} are i.i.d. CN(0, I). Consider the computation of PD;

first. It can be readily shown that under H;
~ 1< ~ 1 & ~ o~
lopt,1 = log| Aa| + = Z: z:? , lopt2 = log|As| + agz{fAlAz zi. (23)
Thus,
1 ~ ~ ~
PD, =P (5szf [I—A1A21}zi <log|A2|—log|A1|) (24)

where the quadratic form

G G N
2 A e =g R () )

C} |

is a weighted sum of NG x% random variables ({|z;[n]|?}) whose density and
distribution functions can be analytically computed but are tedious [7]. Similarly,
under Ho

G
1 ~ ~—1 ~ ~
PDy=P (5 ;zf’ [I— Az A, } z; < log|Aj| — log|A2|) . (26)

We note that the PD can be computed in closed form for M = 2, as indicated
above, but we do not provide the explicit expression since it is rather tedious.

3.3 Decision-Fusion Classifier

The test statistic for the decision-fusion classifier takes the form

ldfyj(:ltl,“', ) 10g|A |+—ZZEHA x; ;\1]':/1]'—}-1—. (27)
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The quadratic form in the test statistic can be expanded as

K G nag

1 ~=1 1 ~—1

e EiBfIAj i = G Z E(sz +ngonyan)TA; (i +ni1)atk)
i=1 i=1 k=1

G
1 ~— ~—
=G E {sf[Aj 132- + 2Re {sflAj lwi}
i=1

1 & ~—1
+Ezng_1)c+k/1j "(i—1)6+k] (28)
k=1

where 8; and w; are defined in (8) and (21). The density for the above quadratic

form can be computed exactly but here we provide a simple approximation that

yields fairly accurate (but conservative) PD estimates and relates lgr ; to lope ;.

We make two approximations. First, we replace the w; ~ CA(0,I/n¢g) in (28)
1

with w; ~ CN(0, I). Second, we replace % Yorg, ng_l)G_I_k/Alj_ n(i_1)yG+k With

~—1
wiA; wi, w; ~ CN(0,I). With the above approximations we have

1 & 1 1 1
~ A1 _
EE:E{IAJ T R Zyl A; Yy, (29)

i=1 i=1

where y; are i.i.d. CN/(0, ;17) under H;. Thus, the PD; and P D, for the decision
fusion classifier can be approximated by those of the optimal classifier given in
(24) and (26) by replacing A; with A;. In particular, the quadratic form for
P D is given by

! sz;zfq [I_ ;11;12_1} zi = ééi |zi[n]]? </\2)[Z][n_]ill[n]) (30)

T

Ql

which is a weighted sum of NG x% random variables ({|z;[n]|?}), as for Cope.
However, the weights are different and essentially amount to a loss in SNR by
a factor of ng compared to C,,; since Cygr does not do signal averaging within
each group. The above conservative analysis shows that Cy fully exploits the
independent observations across different groups, as C,,¢, but incurs an effective
loss in SNR compared to Cop.

3.4 Data-Averaging Classifier

The test statistic for the data-averaging classifier takes the form
~ -~ =1 ~ - <
lia,j(yaa) = 10g| A+ yioA; yaa , Aj=Aj +I/K (31)

where yq4, ~ CN(O,;lj), /Vlj = A;/G + I/K under H;. Thus, y4, can be rep-

L 1/2
resented as Y4, = A; z where z ~ CN (0, I). Proceeding similarly as above, it



10 Ashwin D’Costa et al.

can be shown that
PDy =P <zH;11 [;1;1 - 21;1] z < log| A, — log |}11|) (32)

where the quadratic form can be expressed as

N Al
i 174 o= 200 (34 ) (pre i T m)

n=1
(33)
which is a weighted sum of N x2 random variables ({|z[n]|?}). Similarly,
PDy =P (zH212 [;1;1 - 211‘1] z < log|A;| — log |}12|) . (34)

The density and distribution function of the quadratic form in (33) can be com-
puted in closed form [7] and thus the PD of the data-averaging classifier can
also be computed in closed form.

The data-averaging classifier provides maximum immunity against noise by
averaging over all measurements. However, it does exploit the independent signal
component in different groups to reduce the inherent variations in the signal.
Thus, in the limit of large number of uncorrelated measurements, we expect
both Cop: and Cyr to exhibit improved performance (perfect classification under
certain conditions), but the performance of Cy, will always be limited.

3.5 Asymptotic Performance

We now analyze classifier performance in the limit of large G (and K) for fixed
ng. In this analysis, we consider arbitrary M > 2. According to the analysis
above, the only effect of n¢g is to alter the effective SNR in the case of C,,; and
Cy . First, consider the optimal classifier. Note that

G
1
lopt,j (Y1, - ya) = —logpj(yr, - ya)/G = e § log p; (y:) (35)
=1

since y; are i.i.d. CA/(0, /~1m) under H,,. Thus, under H,,, it is well-known that
by the law of large numbers [8]

Jim Lope (w1, ¥6) = —Bnllogps (V)] = D(pmllps) + o (Y)  (36)

where E,,[-] denotes expectation under H,,, D(pm||p;) is the Kullback-Leibler
distance between p; and py, [§]

D(pml|p5) = B [0g(om (Y) /23 (V)] = log (14;1/|4m]) +tr (4] A — 1)
(37)
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and hy, (YY) is the differential entropy (in bits) of y; under H,, [8]
hin(Y) = —Epn log pr (Y )] = log ((7e) | 4] (38)

From (36), we note that under H,, the different test statistics (for j = 1,---, M)
differ only in the term D(pn,||p;) > 0 which is identically zero for j = m. Thus,
perfect classification (PD =1, PFA = 0) is attained in the limit of large G if

D(pmllpj) > 0Vj,m,j #m (39)

which would be true in general for any given SNR (and any fixed ng).
Now consider the decision-fusion classifier. Recall from (27) and (29) that

the test statistics can be conservatively approximated as

G
~ ~ PN ~ 1 PN
lag,j (Y1, Yq) = —logpi(yy, -, Ya) /G = Ez—logpj(yi) (40)
i=1

since y; are i.i.d. CN (0, Xm) under H,, and p; denotes the density of CA/(0, ;1])
Thus, in the limit of large G' (under H,,)

Jim g i (Y1, Yq) = —Em[logp; (Y)] = D(Bimlp;) + hn(Y) (41)

where D(p||p;) and hp, (f’) are defined similar to (37) and (38). Consequently,
in the limit of large G’ we expect perfect classification if

D(pmllpj) > 0 Vj,m,j #m (42)

which would also be true in general for any given SNR (and any fixed ng).

Finally, consider the data-averaging classifier whose test statistics are given
in (31) where yqq ~ CN(O,;lm) under H,,. Recall that Jlj = A; + I/K and
A; = A;/G+I/K. As G(K) — 00, Aj — A; and A; — 0. Consequently,

lim L j(yae) = log |4, (43)

independent of the true underlying hypothesis. Thus, in the limit of large G (K),
the data-averaging classifier assigns every event to the class with the smallest
value of log|A;| and results in worst performance (PD = PFA =1/M).

3.6 Entropy Comparison Between Data and Decision Fusion

The above analysis indicates that Ciqf approximates the performance of Cop; ex-
cept for an SNR loss depending on the fraction of correlated measurements ng.
The numerical results in the next section confirm the analysis. However, the at-
tractiveness of C'y is also implicitly based on the assumption that communicating
the likelihoods from the K nodes to the manager node puts a smaller commu-
nication burden on the network compared to communicating the N-dimensional
feature vectors in the case of Cpp;.
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Recall from (13) that in Cyg the M quadratic forms {&/ (¥, + I)~'=; , j =
1,--+, M} are communicated from the i-th node to the manager node for i =
1,--+, K. In Copt, on the other hand, the N-dimensional vectors x; are commu-
nicated from the K nodes to the manager node. Thus, we need to compare the
cost of communicating M quadratic forms (scalars) to that of communicating
an N-dimensional Gaussian vector from each node to the manager node. We
compare the communication cost in terms of differential entropy [8].!

The differential entropy of ® ~ CN(0, ¥, + I) is

hm(X) = —Ellog pm (X)] = log ((me)™ | Z o + I|) = log ((me)™ |Am + I|) (44)

and quantifies the information content of any ®; from m-th class.
Now consider the differential entropy of the quadratic forms used by Cy;. Let
¢;m denote the quadratic form associated with {4 ; under H,,

qjm:a:H(Ej—i—I)_la::zHAjmz (45)

where & ~ CN(0,X,, + I) and the second equality is based on the eigen-
decomposition

(Zm+DV(Z 4+ D) Y(Zn + D)2 =UA; U (46)

which uses the representation # = (¥, +I)1/2z, z ~ CN(0,I). Note that under
the simultaneously diagonalizable signal model we have

o~ ~—1 ~
Ajm = AmA; | Aj = A; + 1. (47)

We want to compute the entropy of the quadratic form random variable @Q;,
for all j, m. We first compute the worst case (highest) entropy by assuming that
QQjm 1s Gaussian. Using the fact that  is Gaussian, it can be readily shown that

E[Qjm] = En[z" (X, + I)"'@] = tr (Ajm) , var(Qm) = tr (A3,,).  (48)

Thus, the worst-case entropy of Q;n, is given by [§]

h(Qjm) = %log (2me tr (Ajzm)) . (49)

Note from (47) that A;,, = I for j = m. Thus, h(Q;;) is the same for all j. For
Jj = m, the true entropy can also be easily computed since g;; = ||z||* from (45).
Now, ¢ = ||z||? ~ x5 with density given by [7]

1
pole) = qu_le_q 420 (50)

! We note differential entropy can be a bit misleading since it can be negative. However,
a comparison of the difference in differential entropies is still valid — a quantity with
higher entropy would require more bits to encode. A more intuitive interpretation
of differential entropy is based on the fact that the entropy of an n-bit quantization
of continuous random variable X is approximately h(X) + n [8].
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and thus
Q) = ~Tllogpo(Q)] = log(¥ — ! = N = (v = 1) [ " pola)log(g)dq . (51)

We note that the true entropy of g;pm,, for j # m, can also be computed in
closed-form but it is a bit more involved. Furthermore, as our numerical results
indicate, h(Q) is a good estimate for the entropy of ¢;,, for all j, m.

4 Simulation Results Based on Real Data

We now present numerical results based on real data collected in the SensIT
program. We consider the problem of classifying a single vehicle. We consider
M = 2 classes: Amphibious Assault Vehicle (AAV; tracked vehicle) and Dragon
Wagon (DW; wheeled vehicle). We simulated N = 25 dimensional acoustic mea-
surements from K = Gng = 10 nodes according to the model in Section 2.3. The
eigenvalues (PSD samples) for the two vehicles were estimated from experimental
data. The measurements at different nodes were generated using (21). The PD
and PF A were estimated using Monte Carlo simulation over 5000 independent

events. For € ~ CN(0, A + I), SNR = tr(A)/tr(I).

200

—— WHITE DATA
—— AAV DATA
DW DATA

. GAUSSIAN || H.
GAUSSIAN Ijaav |J H
GAUSSIAN |, | H

+ dw ' aav
TRUE Il | HJ

=
13
=]

dw

[
o
=]

DIFFERENTIAL ENTROPY
o
=}

Fig. 1. Comparison between differential entropies of N = 25 dimensional Gaussian
vectors used by lop: and those of the quadratic forms used by lg. The entropies for
a white vector and two correlated vectors (AAV and DW) are plotted. The worst-
case entropies for quadratic forms, assuming Gaussian statistics, are plotted. The true
entropy of the quadratic forms, under the correct hypothesis, is also plotted. The
entropy gains of decision fusion over data fusion are evident.

Figure 1 compares the differential entropy of Gaussian data in (44) with that
of the quadratic forms in (49) and (51). The entropies for three data vectors
are plotted: white data (maximum entropy), AAV data, and DW data. The



14 Ashwin D’Costa et al.

worst-case entropy in (49) of the quadratic forms used by Cy4 are also plotted
for all j,m (they are nearly identical). Tt can be seen that for SNR above 5dB,
the worst-case entropy of Qjm is lower than that of data. The true entropy
of @;;, given in (51), is also plotted for comparison. The true entropy of @;;
is seen to be substantially lower compared to that of data for the entire SNR
range considered. This indicates the significant potential gains of Cg; over Cypy
in terms of the communication burden.
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Fig.2. PD of the three classifiers versus SNR. (a) K = ng = 10 (perfectly correlated
measurements). (b) G = 2 and ng = 5. (¢) G =5 and ng = 2. (d) K = G = 10
(independent measurements).

Figure 2 plots the P D as a function of SNR for the three classifiers for K = 10
and different combinations of G and ng. The PF A is simply given by 1 — PD
for M = 2. As expected, C,,; and Cy, perform identically for K = ng (per-
fectly correlated case; Figure 2(a)), whereas Copt and Cg perform identically
for K = G (independent case; Figure 2(d)). Note that Cy4 incurs a small loss
in performance in the perfectly correlated (worst) case which diminishes at high
SNRs. The performance loss in Cygq in the independent (worst) case is very sig-
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nificant and does not improve with SNR.. This is consistent with our analysis. At
high SNR, all events are classified as DW by C}, since log |Apw | < log|Aaav
due to the peakier eigenvalue distribution for DW, as evident from Figure 3(a).
Figure 3(b) compares the PD of the three classifiers for an intermediate case
(G = ng = 2) with K = 4, N = 15-dimensional measurements. Analytically
computed PD for C,,; and Cy, and the conservative approximation for PD of
Cyr are also plotted and agree well with the simulation results.

G=2n.=2N=15 M=2
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Fig. 3. (a) Covariance matrix eigenvalues (PSD estimates) for AAV and DW. (b) Com-
parison of simulated and analytical PD for K =4, G =2, ng =2 and N = 15.

Figure 4 plots the PD for the three classifiers as function of G (K = 10) for
two different SNRs. It is evident that Cy closely approximates C\pr whereas Cyq
incurs a large loss when K # ng. It is worth noting that for SNR=-5dB, the
performance of Cop and Cyy first improves slightly with G and then gets worse
again. This is consistent with the observation, in non-coherent communication
over fading channels, that there is an optimal level of diversity (G) for a given
SNR - increasing GG beyond that level results in a loss in performance [7].

5 Conclusions

We have taken a first step in addressing the problem of how much information
should be exchanged between nodes for distributed decision making in sensor
networks. Our analysis is based on modeling the source signal as a stationary
Gaussian process. In general, measurements from multiple nodes will provide
a mixture of correlated and uncorrelated information about the source signal.
The optimal classifier exploits the correlated measurements to improve the SNR
and the independent measurements to stablize the inherent statistical variabil-
ity in the signal. Both effects are important for improving classifier performance.
However, for stochastic signals, the fusion of independent measurements is most
significant. In this context, our results demonstrate that the simple sub-optimal
decision-fusion classifier, that treats all measurements as independent, is not only
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Fig.4. Comparison of PD of the three classifiers for varying values of G (K = 10). (a)
SNR = -5 dB. (b) SNR = 0 dB.

an attractive choice given the computational and communication constraints in
a sensor network, but is also a robust choice from a decision theoretic viewpoint.
The decision-fusion classifier fully exploits the independent measurements and
only incurs an effective SNR, loss compared to the optimal classifier depending on
the fraction of correlated measurements. However, if the source signal exhibits a
non-zero mean or fewer degrees of freedom (lower-rank covariance matrix), data
averaging to improve SNR might become more important. We note that exploit-
ing a non-zero mean is difficult in practice due to various sources of measurement
error. Directions for future research include hard decision fusion, quantized mea-
surements, and multiple-target classification.
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