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Abstract

The task of classifying the types of moving vehicles in a distributed, wireless sensor network is investigated.
Specifically, based on an extensive real world experiment, we have compiled a dataset that consists of 820 MByte
raw time series data, 70 MByte of pre-processed, extracted spectral feature vectors, and baseline classification
results using the maximum likelihood classifier. The purpose of this paper is to detail the data collection procedure,
the feature extraction and pre-processing steps, and baseline classifier development. The database is available for
download athttp://www.ece.wisc.edu/ ∼sensit starting on July 2003.

I. I NTRODUCTION

The emergence of small, low-power devices that integrate micro-sensing and actuation with on-board processing
and wireless communication capabilities stimulates great interests in wireless distributed sensor networks (WDSN)
[7], [6], [13]. A WDSN is often deployed to perform tasks such as detection, classification, localization and tracking
of one or more targets within the sensor field. The sensors are typically battery-powered and have limited wireless
communication bandwidth. Therefore, efficient collaborative signal. processing algorithms that consume less energy
for computation and communication are needed for these applications [9].

Vehicle type classification is an important signal processing task that has found widespread military and civilian
applications such as intelligent transportation systems. Typically, acoustic [18], [15] [3], [12], [5], [20] or seismic
[14] sensors are used for such a purpose. However, previous results have focused on the classification based on
signals obtained at a single or few sensors and processed in a centralized manner. Hence these existing results is
only partially useful for a WDSN application.

In this paper, we consider the implementation of such a task in a WDSN environment. Each sensor in the WDSN
will be equipped with a microphone or a geophone. Upon detection of the presence of a vehicle in the vincinity
of the sensor, the on-board processor will extract feature vectors based on the acoustic or seismic signal sensed by
the sensors. In a wireless sensor network, the communication bandwidth is very limited. Hence, instead of sending
the feature vector, a local pattern classifier at each sensor node will first make a local decision on what type of the
vehicle is based on its own feature vector. Statistically, this is a multiple-hypotheses testing problem. The probability
of correct classification can also be estimated. The local decision, together with the estimated probability of being
a correct decision then can be encoded and transmitted efficiently via the wireless channel to a local fusion center
ready for decision fusion. Hence, from a signal processing point of view, the WDSN vehicle classification problem
comprises of two parts: local classification and global decision fusion.

The purpose of this paper is to describe the development of a WDSN vehicle classification data set, and the
baseline performance when a set of existing pattern classification methods are applied. This data set is extracted
based on the sensor data collected during a real world WDSN experiment carried out at Twenty-nine Palms, CA
in November 2001. This data set includes (a) the raw time series data observed at each individual sensors, (b) a
set of acoustic feature vectors extracted from each sensor’s microphone and (c) class label manually assigned to
each feature vector by a human operator to ensure high accuracy of the class labels. Accompanying this data set is
a suite of pattern classifier programs written in Matlab m-file format to perform local classification of the feature
vectors provided in the data set. Also included are training and testing results of local classification and global
decision fusion.

This data set and its accompanying programs are available for download at the web address:
http://www.ece.wisc.edu/ ∼sensit
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By providing these to the research community, the results presented in this paper serve as a state-of-the-art
baseline performance benchmark to be compared to future vehicle classification results obtained using this data set.

The rest of this paper is organized as follows: The characteristic of a WDSN will be discussed in section II.
The Twenty-nine Palms WDSN experiment will then be reviewed, and the raw acoustic data collection method
will be summarized in section III. In sections IV and V, we survey existing acoustic features used for the vehicle
classification purpose. We then describe the spectrum based feature extraction procedure and feature selection
procedure that yield a set of judiciously selected feature vectors. In section VI, we briefly review several existing
pattern classifiers, including the nearest neighbor classifier, maximum likelihood classifier with uni-variate Gaussian
probability density function model, and support vector machine. Then the local classification results using these
classifers will be reported. In section VII, we report the decision fusion results based on majority voting as well
as a weighted voting method.

II. CHARACTERISTICS OFA W IRELESSDISTRIBUTED SENSORNETWORK

In a wireless distributed sensor network, individual sensor nodes are deployed randomly over a given sensor
field. Each sensor node will be equipped with an on-board processor, a wireless communication transceiver, various
types of sensors, digital sampling devices, and battery. Often, sensor nodes within a geographical region will be
grouped to form a local cluster so that a certain hierarchy of command and control over the entire sensor field can
be established. Each local cluster will elect one or more sensor nodes as the cluster head where spatial decision
fusion of sensors within a cluster will be performed.

Before vehicle type classification can be embarked, individual sensors will need to be activated, and then
periodically perform target detection algorithm to detect the presence of a moving vehicle in the neighborhood
of the sensor. Once a positive detection is made, the pattern classification algorithm will start running to classify
the incoming acoustic signature into one of the pre-defined classes.

Up to now, all these tasks will be performed in the on-board microprocessor of each individual sensor node.
Hence, the key issue here is to reduce complexity of computation and on-board storage rquirement and therefore
conserve on-board energy reserve. This energy constraint implies that not all classification algorithms will be suitable
for the implementation on a WDSN sensor node. As such, performance and energy consumption trade-offs must
be sought.

The local decisions can be encoded efficiently and transmitted from individual sensor node to the local cluster
head for decision fusion. Since not all sensor nodes within a WDSN will detect the presence of a moving vehicle
within the sensor field, not every sensor node will produce a local classification result. Furthermore, due to wireless
communication error and possible network congestion, not all local decisions can be reported back to the cluster
head in time for decision fusion. As such, the decision fusion must be performed with imperfect knowledge of
local decisions.

The nodes distributed in a geographic region are usually partitioned according to space time cells as illustrated
in Figure 1. Each cell has a manager node which is responsible for coordinating the networking/routing protocols
and CSP algorithms within that cell. Real-time sampled data is obtained from the sensors in different sensing
modalities for different events involving moving target vehicles. Sensing modalities could be acoustic, seismic,
Passive Infra-Red (PIR) to name a few.

Detection of an event involving a target at a node requires minimum a priori knowledge and can be performed
using an energy-based Constant False Alarm Rate (CFAR) detection algorithm which dynamically adjusts the
detection threshold. Temporal processing on the sampled data of a detected event at a node is carried on to obtain
signatures or features that are used for classification. The type of features to be used (e.g. FFT-based, wavelet-
based)and extracting those features relevant for classification is a highly challenging problem in itself and several
methods commonly used in pattern recognition find their application here.

A wide variety of algorithms have been proposed in literature for the purpose of classification [4], each having
its own advantages and disadvantages. The main objective in the distributed sensor network case is to develop
low complexity algorithms that classify these extracted features so as to make efficient use of the limited power
and bandwidth capabilities of the nodes. Techniques based on Maximum Likelihood (ML) estimation, Support
Vector Machines (SVM), k-Nearest Neighbor (kNN) and Linear Vector Quantization have been developed. Different
algorithms could be used in conjunction to provide algorithmic heterogeneity. However, the insights offered by the
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Fig. 1. Map of the deployed sensor network.

ML technique and its low computational and storage requirements as compared to the other techniques makes it
the favored algorithm for node-based classification.

III. E XPERIMENT DESCRIPTION

The data set that are being discussed in this paper was collected at the third SensIT situational experiment
(SITEX02), organized by DARPA/IXOs SensIT (Sensor Information Technology) program. In this experiment,
seventy-five WINS NG 2.0 nodes [10] were deployed at the Marine Corps Air Ground Combat Center in Twenty-
nine Palms, CA, USA. During a two-week period, various experiments have been conducted. A map of the entire
field is depicted in Figure 1 which consists of a east-west road and a south-north road and an intersection area.
The data collected for this data set were recorded on a rectangular sub-region of size meters by meters during
November 18 to 21, 2001. The runs consist of single vehicles following one of the three roads with a constant
speed.

Testing runs were performed by driving different kinds of vehicles across the testing field, where nodes were
deployed following the arrangement shown in Figure 3. The sensor field is an area of approximately900 × 300
meters at MCAGCC. The sensors, denoted by dots of different colors in Figure 3 are placed along the side of the
road. The separation of adjacent sensors ranges from 20-40 meters.

The WINS NG 2.0 nodes, shown in Figure 2, provide a system on which SensIT users can build and test
their distributed sensor algorithms. Each sensor node is equipped with three types of sensing modalities: acoustic
(microphone), seismic (geophone), and infrared (polarized IR sensor). The sampling rate for all the signals is 20
kilohertz. The NG 2.0 nodes consists of a A/D converter and an on-board programmable digital signal processor
that digitize the analog signal and place them into a circular buffer. For the purpose of recording raw sensor data
for later analysis, a back-end ethernet network were laid that serves solely for the purpose of data collection.

Four target vehicle classes, namely Assault Amphibian Vehicle (AAV), Main Battle Tank (M1), High Mobility
Multipurpose Wheeled Vehicle (HMMWV) and Dragon Wagon (DW) were used. Each node records the acoustic,
seismic and infrared signal for the duration of the run. The objective is to detect the vehicles when they pass through
each region. The type of the passing vehicle then will be identified, and the accurate location of that vehicle will
be estimated using anenergy-based localization algorithm.

IV. EVENT EXTRACTION

The nodes used in the experiment record the data for different sensors, or modalities; data is recorded for acoustic,
seismic and infrared modalities at a rate of 4960 Hz.

For the different vehicle types, the vehicle was driven around the three roads shown in the Figure 3; each road
received a different run number. The west to north road was numbered 1; the north to east road was numbered 2,
and the east to west road was numbered 3. Subsequent runs were named incrementally. Thus, each run was named
after the vehicle tested and the road covered; i.e. AAV3, AAV4, AAV5, etc.



4

Fig. 2. A Sensoria WINS NG 2.0 node.

Fig. 3. Sensor field layout.

After the series were recorded, it was needed to extract the actual event from the run series. Although the run
might be several minutes in length, the event series will be much shorter, as it only spans the short period of time
when the target is close to the node. During the Collaborative Signal Processing Tasks, the detection algorithm
determines whether the vehicle is present or not in the region in order to perform classification on the time series.
The CFAR detection algorithm outputs a decision every 0.75 seconds, based on the energy level of the acoustic
signal, as shown in Figure 7.

For the data set extraction, a k-Nearest Neighbor classifier was used to label each 0.75-second data segment
from each separate node as a detection or non-detection. Two features are used for this classification: the distance
between the vehicle and the node and the acoustic signal energy for that given time. The runs AAV3 and DW3
were used for training, and the events in these runs were identified manually, i.e. directly listening to the time
series. From this classifier we obtain the event labeling for each one of the nodes for each run. We use clustering
to reduce the number of events per run if possible.

The result of this procedure is the extraction of time series of variable lengths that will contain the acoustic,
seismic and PIR information of the time surrounding the closest point of approach of the vehicle to the node.
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Fig. 4. Constant False Alarm Rate (CFAR) algorithm: times with high energy values are marked as detections.

Fig. 5. Detection labelling for training runs. The two axes represent the two dimensions of the feature; dark marks represent detections
and light marks represent non-detections.

Fig. 6. Sample detection label and CFAR detection result; blue line represents energy, black line represents detection label derived from
the kNN classifier, and the red line represents the CFAR detection result.
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Fig. 7. Sample time series and classification features for acoustic and seismic modalities.

V. FEATURE EXTRACTION

The event time series are used to extract multidimensional features for classification purposes. The infrared
modality is not used at this stage, as the observation signal length is very short and not uniform across events. For
this data set, the extracted features are based on the frequency spectrum of the acoustic and seismic signals of the
event. The Fast Fourier Transform (FFT) of these signals is calculated for every 512 point sample (every 10.32 ms
for the current sample rate), which yields 512 FFT points with resolution of 9.6875 Hz.

For the acoustic modality, we chose the first 100 points, containing frequency information of up to 968.75 Hz.
The points are averaged by pairs, resulting in a 50-dimensional FFT-based feature with resolution of 19.375 Hz
with information for frequencies up to 968.75 Hz. For the seismic modality, we chose the first 50 points, containing
frequency information of up to 484.375 Hz. This results in a 50-dimensional FFT-based feature with resolution of
9.6875 Hz with information for frequencies up to 484.375 Hz. All features are normalized and means are removed.

VI. L OCAL CLASSIFICATION

In this section, we will provide some baseline evaluation of the data set using three common classification
algorithms. It is worth noting that in real-life situations, the largest error-inducing factor for the vehicle surveillance
detection case is the presence of high-energy noise factors, such as wind and radio chatter. In order to avoid
false classification of these false detections into a valid vehicle class, we have implemented a noise class with
features extracted from the timeseries that show the ocurrence of one of these high-energy noise events. Thus,
for the experiments, we have created a three-class classification scenario; we test it using thek-Nearest Neighbor,
Maximum Likelihood, and Support Vector Machine algorithms.

A. k-Nearest Neighbor Classifier

k-NN, is one of the simplest, yet very accurate, classification methods. It is based on the assumption that examples
that are close in the instance space belong to the same class. Therefore, an unseen instance should be classified
as the majority class of itsk (1 ≤ k) nearest neighbors in the training data set. Although thek-NN algorithm is
quite accurate, the time required to classify an instance is high, since the distance (or similarity) of that instance
to all the instances in the training set have to be computed. Therefore, the classification time ink-NN algorithm is
proportional to the number of features and the number of training instances.
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B. ML Classifier

The samples (features) in each of theC classes are assumed to have been drawn independently according the
probability law p(x|ωi), i = 1, 2, . . . C. We further assume thatp(x|ωi) has a know parametric form, i.e. it is
multivariate normal with the density

p(x|ωi) =
1

(2π)
d

2 |Σ| 12
exp

[
−1

2
(x− µ)HΣ−1(x− µ)

]
(1)

and is therefore determined uniquely by the value of a parameter vectorθi which consists of the componentsµi

andΣi, the mean and covariance matrices respectively.

p(x|ωi) ≈ N(µi,Σi) (2)

Our problem of classification then reduces to using the information provided by the training samples to obtain
good estimates for the unknown parameter vectorsθi, i = 1, 2, . . . C. For this we use a set of samples for a
particular classi drawn independently from the probability densityp(x|θi) to estimate the unknown parameter
vector. Suppose this set containsn samples,x1,x2, . . .xn. Then the log-likelihood function can be represented as:

l(θ) =
n∑

k=1

ln p(xk|θ) (3)

The maximum likelihood estimate ofθ is, by definition, the valuêθ that maximizesl(θ). This maximum likelihood
estimateθ̂ can be obtained from the set of equations

∇θl = 0 (4)

The ML estimates forµ andΣ are thus given by:

µ̂ =
1
n

n∑

k=1

xk (5)

Σ̂ =
1
n

n∑

k=1

(xk − µ̂)(xk − µ̂)H (6)

Using a set of discriminant functionsgi(x), i = 1, 2, . . . C, the classifier is said to assign a feature vectorx to
classωi if gi(x) > gj(x) for all j 6= i.

For minimum error rate classification we take the maximum discriminant function to correspond to the maximum
posterior probability

gi(x) = p(ωi|x) =
p(x|ωi)p(ωi)

C∑
j=1

p(x|ωj)p(ωj)
(7)

which can be simplified to

gi(x) = ln p(x|ωi) + ln p(ωi) (8)

This expression can be readily evaluated since we have assumed the densitiesp(x|ωi) are multivariate normal :

gi(x) = −1
2
(x− µi)HΣ−1

i (x− µi)− d

2
ln 2π − 1

2
ln |Σi|+ lnP (ωi) (9)
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Partition Q1 Q2 Q3 Average
Classification File Size Set Size File Size Set Size File Size Set Size File Size Set Size

Modality (kB) (SVs) (kB) (SVs) (kB) (SVs) (kB) (SVs)
Acoustic 21952.8877 38518 21796.37305 38246 21781.75293 38218 21843.67122 38327.33333
Seismic 25424.08789 44531 25544.11621 44742 25443.52 44565 25470.58 44612.67

TABLE I

TRAINING SET SIZES FORSVM CLASSIFIER.

C. Support Vector Machine Classifier

The SVM classifier used here is a C support vector classification (C-SVC), implemented in LIBSVM. In short,
C-SVC solves the following primal problem:

min
w,b,ε

(
1
2
wT w + C

l∑

i=1

εi

)
(10)

under constraints

yi(wT φ(xi) + b) ≥ 1− εi (11)

and ε ≥ 0 for i = 1, 2, . . . , l, xi and yi are the training data (feature vector) and the associated class label
respectively. The dual problem is:

min
w,b,ε

(
1
2
αT Qα− eT α

)
(12)

under constraints0 ≤ αi ≤ C andyT α = 0, wheree is a all-one vector,C > 0 is the upper bound,Q is an l by
l positive semi-definite matrix,Qij := yiyjK(xi, xj), andK(xi, xj) := φ(xi)T φ(xj) is the kernel. The functionφ
maps the training dataxi into a higher dimensional space. And the decision rule for categorizing a test featurex
is (assume two classes with labels 1 and -1):

sign

(
l∑

i=1

yiαiK(xi, x) + b

)
(13)

The C-SVC we used for classifying Sitex02 data has theC value equal to 1(C = 1). The kernel used is a
polynomial kernel with the following format:

K(xi, xj) = (1 + xT
i xj)2 (14)

Rough size estimates for the training sets are as shown in Table VI-C. SV stands for number of support vectors
used.

D. Results Metrics

The results are given in the form of aconfusion matrix, which classifies the vectors/events by their actual
classification (rows,xi), and the experimental classification result (columns,yi). The results from the partition tests
are added up to get the result for each feature and each classifier.

The detection probability for each class is the ratio from the number of samples/events correctly classified for
that class to the total number of samples/events in that class:P (yi|xi).

The false alarm probability for each class is the ratio from the number of samples/events of all other classes
classified as that class to the total number of samples/events of other classes:P (yi| xi)

The classification rate is the ratio from the number of samples/events correctly classified for all classes to the
total number of samples/events:P (yi ∧ xi).

Example:
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TABLE II

CONFUSION MATRICES FOR DIFFERENT CLASSIFIERS USING3-WAY CROSS-VALIDATION ON ACOUSTIC MODALITY

Testing Partition Q1 Q2 Q3 Total
5165 657 1791 5176 627 1811 5073 614 1927 15414 1898 5529

k-Nearest Neighbor 531 5344 2932 542 5410 2856 502 5412 2894 1575 16166 8682
1569 2029 11037 1599 2018 11019 1672 1975 10989 4840 6022 33045
5667 829 1117 5597 805 1212 5554 875 1185 16818 2509 3514

Maximum Likelihood 1282 5730 1795 1253 5804 1751 1263 5743 1802 3798 17277 5348
1660 2859 10116 1667 2991 9978 1732 2853 10051 5059 8703 30145
5134 829 1650 5032 824 1758 5032 836 1746 15198 2489 5154

Support Vector Machine 574 5296 2937 589 5290 2929 552 5291 2965 1715 15877 8831
621 2729 11285 645 2833 11158 719 2703 11214 1985 8265 33657

TABLE III

CONFUSION MATRICES FOR DIFFERENT CLASSIFIERS USING3-WAY CROSS-VALIDATION ON SEISMIC MODALITY

Testing Partition Q1 Q2 Q3 Total
4195 2020 1398 4235 2027 1352 4206 2085 1323 12636 6132 4073

k-Nearest Neighbor 3033 4409 1365 2957 4401 1450 3005 4388 1415 8995 13198 4230
2509 3294 8832 2456 3254 8926 2500 3326 8810 7465 9874 26568
5090 1769 754 5050 1819 745 5173 1679 762 15313 5267 2261

Maximum Likelihood 2983 3541 2283 2918 3535 2355 2955 3506 2347 8856 10582 6985
2693 1057 10885 2622 1100 10914 2638 1167 10831 7953 3324 32630
4388 2614 611 4372 2635 607 4489 2490 635 13249 7739 1853

Support Vector Machine 1949 4989 1869 1843 5100 1865 1901 4908 1999 5693 14997 5733
2318 1964 10353 2237 1956 10443 2267 1976 10393 6822 5896 31189

Confusion Matrix




a b c
d e f
g h i




Detection probability for class 1
a

a + b + c

False alarm probability for class 2
b + h

a + b + c + g + h + i

Classification Rate
a + e + i

a + b + c + d + e + f + g + h + i
(15)

To validate the results of a classifier given a certain data set, the set is randomly split into two parts: one is used
as the training set and the other is used as a validation set, in order to estimate the generalization error. A simple
generalization of this method is them-way or m-fold cross-validation. In this case, the data set is randomly divided
into m disjoint sets of roughly equal sizen/m, where n is the total number of feature vectors available in the data
set. The classifier is trained m times, each time with a different set held out as a validation set. The estimated
performance is the mean of the m errors. In this case, we usem = 3 and name the three different validation cases
Q1, Q2 and Q3.

E. Results

Tables II and III show the confusion matrices for the different classification algorithms tested with the current data
set for acoustic and seismic modality, respectively. The table offers a wealth of information regarding the feasability
of differentiation among the proposed classes, as well as the effect of unwanted noise in the classification process.
Tables IV and V present the detection, false alarm and classification rates for the same cases.

VII. R EGION FUSION

Apart from the localization and tracking of the target, it is also necessary to classify the type of vehicle within
the region based on target classification results reported from member sensor nodes. Note that in our current
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TABLE IV

CLASSIFICATION, DETECTION AND FALSE ALARM RATES FOR DIFFERENT CLASSIFIERS USING3-WAY CROSS-VALIDATION ON ACOUSTIC

MODALITY

Measurement Detection Rate False Alarm Rate Classification
Class AAV DW Noise AAV DW Noise Rate
k-Nearest Neighbor 67.48% 61.18% 75.26% 29.39% 32.88% 30.07% 69.36%
Maximum Likelihood 73.63% 65.39% 68.66% 34.50% 39.36% 22.72% 68.95%
Support Vector Machine 66.54% 60.09% 76.66% 19.58% 40.38% 29.35% 69.48%

TABLE V

CLASSIFICATION, DETECTION AND FALSE ALARM RATES FOR DIFFERENT CLASSIFIERS USING3-WAY CROSS-VALIDATION ON SEISMIC

MODALITY

Measurement Detection Rate False Alarm Rate Classification
Class AAV DW Noise AAV DW Noise Rate
k-Nearest Neighbor 55.32% 49.95% 60.51% 56.57% 54.81% 23.81% 56.24%
Maximum Likelihood 67.04% 40.05% 74.32% 52.33% 44.81% 22.08% 62.81%
Support Vector Machine 58.01% 56.76% 71.03% 48.58% 47.62% 19.56% 63.79%

system architecture, the target localization may be performed prior to region-wide target classification. Hence,
if the target position is relatively accurate, it is possible to use the estimated target location and known sensor
coordinates to calculate the target-sensor distance. Then, one may estimate the empirically derived probability of
correct classification at a particular sensor node based on the distance information as described in section 3.2.

A. Data Fusion

Statistically speaking, data fusion [2] is the process of estimating the joint posterior probability (likelihood
function in the uninformed prior case) based on estimates of the marginal posterior probability. Letx(i) denote the
feature vector observed at theith sensor node within the region,Ck denotes thekth type of vehicle, the goal is to
identify a functionf(·) such that

P (x ∈ Ck|x(1), . . . , x(N))
4
= P (x ∈ Ck|x).

≈ f(g(P (x ∈ Ck|x(i))), 1 ≤ i ≤ N) . (16)

In our current work, we let the maximum functiong(zk) = 1 if zk > zj , k 6= j, andg(zk) = 0 otherwise. Hence,
our approach is known asdecision fusion. Conventionally, there are two basic forms of the fusion functionf .

1) Multiplicative Form: If we assume that x(i) andx(j) are statistically independent feature vectors, then

P (x ∈ Ck|x) =
N∏

i=1

P (x ∈ Ck|x(i)) . (17)

This approach is not realistic in the sensor network application and cannot be easily adapted to a decision fusion
framework.

2) Additive Form: The fusion function is represented as a weighted sum of the marginal posterior probability
or local decisions:

∧
P (x ∈ Ck) =

N∑

i=1

wigi(P (x ∈ Ck|x(i))) . (18)

A baseline approach of region-based decision fusion would be simply choosewi = 1 for 1 ≤ i ≤ N . This would
be called thesimple votingfusion method.
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B. Maximum A Posterior Decision Fusion

With distance-based decision fusion, we make each of the weighting factorswi in equation 18 a function of
distance and signal to noise ratio, that iswi = h(di, si) wheredi is the distance between theith sensor and the
target andsi is the signal to noise ratio defined as

SNRdB = 10 · log10

(
Es −En

En

)
. (19)

whereEs is the signal energy andEn is the noise mean energy, both determined by the CFAR detection algorithm.
We can use then the characterization gathered from the experiment referred in section 2 to formulate a Maximum
A Posterior (MAP) Probability Gating network, using the Bayesian estimation

∧
P (x ∈ Ck|x) = P (x ∈ Ck|x, di, si) · P (di, si) . (20)

The prior probabilityP (di, si) is the probability that the target is at the distance rangedi, and the acoustic
signal SNRdB is at thesi range, and can be estimated empirically from the experiments. The conditional probability
P (x|di, si) is also available from the empirically gathered data. With these, we may simply assign the following
weights in eq. 18:

wi = P (x|di, si) · P (di, si) . (21)

In other words, if a particular sensor’s classification result is deemed as less likely to be correct, it will be
excluded from the classification fusion.

We now have another possible choice ofwi. That is,

wi =

{
1 di < dj , j 6= i
0 otherwise

. (22)

This choice of weights represents a nearest neighbor approach, where the result of the closest node to the target
is assumed to be the region result.

We can use other choices that are functions only of distance. In this work, we use a simple threshold function:

wi =

{
1 di ≤ dmax

0 otherwise
. (23)

We compare these three different methods of choosingwi to the baseline method of settingwi = 1 for all i, and
test them using seven different experiments in the Sitex02 data set, using one out of n training and testing. Our
metrics are the classification rate and the rejection rate.

The classification rate is the ratio between the number of correctly classified samples and the total numbered of
samples classified as vehicles. The rejection rate is the rate between the number of samples rejected by the classifier
and the total number of samples ran through the classification algorithm. Consequentially, the acceptance rate is
the complement of the rejection rate.

There are two rejection scenarios with our current classifier scheme; one is at the node level, where one of the
classes characterized during training collects typical samples of events with high energy that do not correspond
to vehicles. These events are incorrectly detected and include such noises as wind, radio chatter and speech. The
other is at the region level, where the region fusion algorithm does not specify satisfactorily a region classification
result, i.e. no nodes were closer thandmax to the vehicle for the distance-based region fusion algorithm.

It is desired to obtain high classification rates while preserving low rejection rates. The results are listed in
Tables 1 and 2. To analyze the impact of localization errors in the different methods, errors were injected to the
ground truth coordinates following a zero-mean Gaussian distribution with several standard deviations. The results
are shown in Tables 3 to 8.
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Table 1. Classification rate fusion results using 4 methods
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.19% 80.82% 83.55% 75.58%
AAV3 33.87% 50.79% 73.33% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 90.63% 84.31% 91.84%
DW3 80.00% 83.78% 85.71% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 75.00% 75.86% 63.33%
DW12 70.00% 65.52% 65.63% 64.29%

Table 2. Rejection rate fusion results using 4 methods
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.53% 21.56% 7.40% 10.40%
AAV3 3.13% 1.56% 6.25% 7.81%
AAV6 4.29% 27.14% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 31.43% 17.14% 14.29%
DW12 30.23% 32.56% 25.58% 34.86%

Table 3. Classification rate fusion results using 4 methods, and error injection withσ = 12.5 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.14% 80.51% 81.89% 75.58%
AAV3 32.79% 56.45% 67.21% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 93.88% 90.63% 84.31% 91.84%
DW3 80.00% 81.08% 83.33% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 78.26% 75.86% 63.33%
DW12 66.67% 57.14% 62.50% 64.29%

Table 4. Rejection rate fusion results using 4 methods, and error injection withσ = 12.5 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.75% 22.32% 7.40% 10.40%
AAV3 4.69% 3.13% 6.25% 7.81%
AAV6 4.29% 25.71% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 34.29% 17.14% 14.29%
DW12 30.23% 34.88% 25.58% 34.86%

Table 5. Classification rate fusion results using 4 methods, and error injection withσ = 25 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.74% 79.42% 79.29% 75.56%
AAV3 37.70% 54.39% 55.36% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 100.00% 88.24% 91.84%
DW3 80.00% 82.86% 80.95% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 72.00% 72.41% 63.33%
DW12 70.00% 46.67% 58.06% 64.29%
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Table 6. Rejection rate fusion results using 4 methods, and error injection withσ = 25 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.75% 24.78% 8.63% 10.40%
AAV3 4.69% 10.94% 12.50% 7.81%
AAV6 4.29% 30.00% 2.86% 7.14%
AAV9 3.92% 50.98% 0.00% 3.92%
DW3 4.76% 16.67% 0.00% 4.76%
DW6 6.06% 6.06% 0.00% 0.00%
DW9 14.29% 28.57% 17.14% 14.29%
DW12 30.23% 30.23% 27.91% 34.88%

Table 7. Classification rate fusion results using 4 methods, and error injection withσ = 50 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.74% 80.48% 76.72% 75.58%
AAV3 37.70% 51.28% 39.29% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 95.00% 86.27% 91.84%
DW3 80.00% 84.62% 78.57% 82.50%
DW6 100.00% 95.24% 96.97% 100.00%
DW9 66.67% 72.22% 71.43% 63.33%
DW12 70.00% 65.00% 64.52% 64.29%

Table 8. Rejection rate fusion results using 4 methods, and error injection withσ = 50 m
Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.95% 46.01% 9.24% 10.40%
AAV3 4.69% 39.06% 12.50% 7.81%
AAV6 5.71% 45.71% 4.29% 7.14%
AAV9 3.92% 60.78% 0.00% 3.92%
DW3 4.76% 38.10% 0.00% 4.76%
DW6 6.06% 36.36% 0.00% 0.00%
DW9 14.29% 48.57% 20.00% 14.29%
DW12 30.23% 53.49% 27.91% 34.88%

C. Results

For Tables 1 to 8, the cells that give the highest classification rate are highlighted, including tied cases. It is seen
that Nearest Neighbor method yields out the best results consistently when the error is low or nonexistent - in 9
out of 14 cases. The distance-based and MAP-based methods give comparable results in cases where the error is
larger (each method has the highest rate in 4 to 6 cases out of 14). However, the rejection rates are unacceptable
for the distance-based method, even with nonexistent error, with an average of 35%.

Figure 8 shows the average performance of the different methods for all the error injection scenarios. The results
of the error impact experiments show that the MAP-based classification fusion is not heavily affected by the error
injection; the change for the classification rate is less than 0.1% in average for an error injection up toσ = 50 m
and the rejection rate increases 0.1% in average. The effects on the other methods are more pronounced, with a
change of 3% in average in classification rate for the Nearest Neighbor method and an increase of 24% in the
rejection rate of the distance-based method.

These experiments show higher classification rates for the MAP and Nearest Neighbor approaches compared to
the baseline majority voting approach, while maintaining comparable acceptance rates. Further research is needed
on additional considerations to avoid transmission of node classifications that have low probability of being correct;
it is expected that both the Nearest Neighbor method and an adapted minimum-threshold MAP-based method will
easily allow for these additions.
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Fig. 8. Average classification and acceptance rate results for different classification region fusion methods

VIII. C ONCLUSIONS

In this paper we have introduced a data set extracted from a real-life vehicle tracking sensor network, and have
explained in detail the processing and algorithms used for data conditioning and classification. It is seen in the results
that although the classification rates for the available modalities are only acceptable, methods used in multisensor
networks such as data fusion and decision fusion will enhance the performance of these tasks. Future research in
this direction is active, and it is hoped that the data set made available here will be helpful for implementation and
development.

APPENDIX

The data set described here is available at our website,http://www.ece.wisc.edu/ ∼sensit/ , under
Research Results. Three files are available:timeseries.zip , energies.zip andevents.zip .

A. timeseries.zip

This file contains all the run timeseries in their original binary recording format. No processing has been
done to these files, but tools are included in the next two archives. The files are organized by runs, which
one folder per run (AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, DW1, DW2,
DW3, DW4, DW5, DW6, DW7, DW8, DW9, DW10, DW11, DW12).The files are named using the naming
conventionsensitnn-m-xxx.txt , wherexxx is the run name,nn is the node number andm is the modality
number (1 for acoustic, 2 for seismic and 3 for PIR).

B. energies.zip

This file contains the energy values for the different runs available. The files are organized by runs, nodes and
modalities. The main directory contains the following files:
• sitex02.exe : Executable file to convert original binary data files to ASCII formatted files.
• energies.m : Matlab script to generate energy information from ASCII data files.
• nodexy.txt : Location information for the nodes, given in UTM coordinates.
For each run you will find a directory named after the run (AAV3, AAV4, AAV5, AAV6, AAV7, AAV8,

AAV9, AAV10, AAV11, DW1, DW2, DW3, DW4, DW5, DW6, DW7, DW8, DW9, DW10, DW11, DW12).
This directory will contain axxx_gt.txt file (xxx being the run or directory name), which contains the ground
truth information for the run, or the location information in UTM coordinates recorded every 0.75 seconds. The di-
rectory will also contain several subdirectories: one for each node (n1, n2, n3, n4, n5, n6, n41, n42,
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n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n58, n59, n60, n61 ) and one
for each modality (acoustic_1, seismic_2 and pir_3 ). The node subdirectories will contain the energy
files for all three modalities for that node, the detection label for the node and the timestamp file; the modality
subdirectories will contain the energy files for all nodes for that modality and the timestamp file. The timestamp
file is namedtimestamp.txt ; the energy files are named using the conventionxxxcpann_m.txt and the
detection label files are named using the conventionxxxlabelnn.txt , wherexxx is the run name,nn is the
node number andm is the modality number (1 for acoustic, 2 for seismic and 3 for PIR).

1) Extraction procedure:To convert the binary data files into ASCII data files, you will need thesitex02.exe
file; use the command

sitex02 source.dat destination.txt
wheresource.dat is the filename of the binary file anddestination.txt is the filename of the output

ASCII file.
To extract the energy information, run theenergies.m script in Matlab using the command
energies(runname,nodes)
where runname is the run name in character vector format, andnodes is the vector of node numbers. This

script requires the ASCII data files to be placed in a subfolder namedoutput , using the naming convention
sensitnn-m-xxx.txt , wherexxx is the run name,nn is the node number andm is the modality number
(1 for acoustic, 2 for seismic and 3 for PIR). The energy file will be saved in theoutput subfolder, using the
conventionxxxcpann_m.txt , wherexxx is the run name,nn is the node number andmis the modality number
(1 for acoustic, 2 for seismic and 3 for PIR). The script will return 0 when it runs successfully and -1 on error.

C. events.zip

This file contains the event time series and features for the different runs available.The files are organized by
vehicles, runs, nodes and modalities. The main directory contains the following files:

• acousticfeatures.m : Matlab script to generate training and testing files from event timeseries.
• afm_mlpatterngen.m : Matlab script to extract feature information from acoustic event timeseries.
• extractevents.m : Matlab script to extract event timeseries using the complete run timeseries and the

ground truth/label information.
• extractfeatures.m : Matlab script to extract feature information from all acoustic and seismic event

timeseries for a given run and set of nodes.
• sfm_mlpatterngen.m : Matlab script to extract feature information from seismic event timeseries.
• ml_train1.m : Matlab script implementation of the Maximum Likelihood Training Module (see Section VI).
• ml_test1.m : Matlab script implementation of the Maximum Likelihood Testing Module (see Section VI).
• knn.m : Matlab script implementation of thek-Nearest Neighbor Classifier Module (see Section VI).

There are folders for the different file organizations:run is sorted by run, andvehicle is sorted by vehicle
type. Inrun , for each run you will find a directory named after the run (AAV3, AAV4, AAV5, AAV6, AAV7,
AAV8, AAV9, AAV10, AAV11, DW2, DW3, DW4, DW5, DW6, DW7, DW8, DW9, DW10, DW11, DW12).
This directory will contain several subdirectories: one for each node that has at least one event (the possi-
ble nodes aren1, n2, n3, n4, n5, n6, n41, n42, n46, n47, n48, n49, n50, n51, n52,
n53, n54, n55, n56, n58, n59, n60, n61 ) and one for each modality (acoustic_1 and seismic_-
2). The node subdirectories will contain the timeseries and feature files for both modalities for all events in the node;
the modality subdirectories contain two separate subdirectories,timeseries , which contains the timeseries data
and features , which contains the feature files for all events for that run. Invehicles , there is a directory for
each vehicle type (AAV, DW), which contain a subdirectory for each modality (acoustic_1 and seismic_2 ).
In turn, each one of these contains two separate subdirectories,timeseries which contains the timeseries
data andfeatures which contains the feature files for all events for that run. In all cases, the timeseries files
and the feature files are named using the conventionsxxxeventnn_k_m.txt and xxxevfeatnn_k_m.txt
respectively, wherexxx is the run name,nn is the node number,k is the event number andm is the modality
number (1 for acoustic and 2 for seismic).
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1) Extraction procedure:The scripts require the input files (run timeseries and run labels, the latter ones included
in energies.zip for this case) to be placed in a subfolder namedoutput , using the naming convention
sensitnn-m-xxx.txt , for the run timeseries files andxxxlabelnn_m.txt for the run labels, wherexxx
is the run name,nn is the node number andmis the modality number (1 for acoustic and 2 for seismic). All output
files are saved in the sameoutput folder.

To extract the event timeseries, run theextractevents.m script in Matlab using the command
extractevents(runname,nodes)
where runname is the run name in character vector format, andnodes is the vector of node numbers. The

event timeseries files will be saved using the conventionxxxeventnn_k_m.txt , wherexxx is the run name,
nn is the node number ,k is the event number andm is the modality number (1 for acoustic and 2 for seismic).

To extract the feature files from the event timeseries, run theextractfeatures.m script in Matlab using the
command

extractfeatures(runname,nodes,type)
whererunname is the run name in character vector format,nodes is the vector of node numbers, andtype is

a character defining the vehicle type for the given run (’a’ for AAV, ’d’ for DW and ’h’ for HMMWV. The energy
file will be saved using the conventionxxxevfeatnn_k_m.txt , wherexxx is the run name,nn is the node
number ,k is the event number andm is the modality number (1 for acoustic and 2 for seismic).

All scripts will return 0 when it runs successfully and -1 on error.
2) Notes:No DW1 event files were extracted because of the mismatch in the initial timestamp between modalities.

D. Script customization

All scripts included with the data series can be customized to suit different feature extraction parameters, vehicle
selections and name conventions. Basic Matlab proficiency is required to understand and customize the processing
scripts.
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