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1 Introduction

Wireless sensor networks are an emerging technology that promise an unprecedented opportunity to monitor

the physical world via wireless nodes that can sense the environment in various modalities, such as acoustic,

seismic, infra-red [1, 2, 3, 4]. Typically each node can sense in multiple modalities but has limited computa-

tional and communication abilities due to battery powered operation. A wide variety of applications are being

envisioned for sensor networks, including disaster relief, border monitoring, condition-based machine monitor-

ing, and surveillance in battlefield scenarios. While recent years have seen a surge of research activity in sensor

networks, many significant challenges need to be overcome to realize the vision of sensor networks.

The key challenges are tied to two vital operations in a sensor network: 1) efficient information routing be-

tween network nodes, and 2) collaborative signal processing (CSP) between nodes to extract useful information

from the data collected by the sensors. Exchange of sensor information between nodes in the region of activity

is necessary due to a variety of reasons, including limited (local) information gathered by each node, variability

in operating conditions, and node failure. From a communication and networking viewpoint, sensor networks

are similar to ad hoc multi-hop wireless networks. However, there is a key distinction: the information flow in

a sensor network is fundamentally governed by the activity in the physical environment sensed by the nodes.

Furthermore, in view of the limited communication and computational capability of nodes, an overarching ob-

jective in the design of sensor networks is to exchange the least amount of information between nodes to enable

desired information processing. On the one hand, statistical signal characteristics in a region of space directly

impact the extent and nature of information exchange between nodes for CSP. On the other hand, the exchange

of information between wireless nodes is constrained by the network configuration and the limited node re-

sources. Consequently, the coupling between the networking and physical/sensing layers is much more direct

in sensor networks than in general ad hoc networks. This motivates a central question at the heart of integrated

design of sensor networks:
�
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What are the key principles governing the interplay between information processing and information routing

in wireless sensor networks?

In view of the wide variety of possible signal sources, judicious abstractions of signal statistics in space and

time are necessary to address this question. We propose a statistical signal modeling framework based on the

notion of spatial coherence regions (SCR’s) that captures the salient second-order statistical characteristics of

a wide variety of signals in space and time. The proposed signaling modeling framework enables us to address

two key design facets of sensor networks:

1. Fundamental issues related to distributed signal processing and communication, including space-time sam-

pling, signal inference and information flow requirements associated with each query. It also provides a

general framework for assessing the performance and network cost of CSP algorithms.

2. Fundamental understanding of the interplay between information sensing, processing, communication and

routing. It suggests a natural hierarchical structure for information exchange between nodes for enabling

practical CSP algorithms and associated communication and routing strategies. In particular, it suggests

a fixed matched interface between information processing and routing, with high bandwidth information

exchange naturally restricted to local spatial regions.

A sensor network is typically partitioned into regions to facilitate distributed signal processing and informa-

tion routing. In particular, a location-centric routing paradigm has been recently proposed [5, 6] that is inspired

by the important role of signal sources in sensor networks: network queries involve particular network regions

where the relevant signal sources are located. This fundamental characteristic of information flow is reflected in

virtually all state-of-the-art routing techniques for sensor networks (see, e.g., [1, 5]). The proposed space-time

signaling modeling framework naturally complements the location-centric information routing paradigm.

The next section provides a brief description of location-centric routing. The proposed signal modeling

framework is presented in Section 3. Section 4 discusses the implications of the signal modeling framework in

the design of sensor networks. Concluding remarks are presented in Section 5.

2 Region-Based Information Processing and Routing

Given the limited communication and computational abilities of sensor nodes, a critical consideration in the

design off sensor networks is that most of information exchange and associated CSP must take place at a local

level. The location-centric or region-based routing framework is precisely tailored to meet the needs of CSP
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in sensor networks [5, 6]. The approach is based on the observation that CSP typically requires collaboration

among nodes in a certain region and not among an arbitrarily specified set of nodes. For example, applica-

tion queries regarding the concentration profile of a certain bio-chemical agent in a given area, regarding the

temperature or pressure variation in a given area, or regarding unauthorized entries into a given area, all re-

quire collaboration among sensor nodes in the region of interest. Consequently, in this approach, geographic

regions play the role of a node in the traditional network interface. In particular, the nodes are not individually

addressable. Instead, an application first creates entities called regions, which are then addressable.

In the location-centric paradigm, the network is divided into regions for facilitating distributed information

routing and processing (see Fig. 1). A region typically represents a rectangular geographic area. We assume

that each node is aware of its geographic location, such as through GPS sensors, or through other location

estimation schemes [7, 8, 9]. In each region, a subset of nodes is designated manager sub-region to coordinate

the information exchange and processing within the region. For example, tracking of a moving object generally

involves the following steps [10]:

1. Initial region creation. Regions are first created at potential target entry areas. These regions are then tasked

to detect an incoming target. For example, Region 1 in Fig. 1.

2. Target detection and classification. Target detection in a region involves CSP among the nodes in the

region. For example, outputs of energy detectors at each node may be communicated to the manager nodes,

who in turn use a robust fusion algorithm to arrive at a consensus decision for the region. Each node may

also send feature vectors to the manager nodes for target classification.

3. Target localization and location prediction. Target detection information (for example, the time of closest

point of approach and energy detector outputs) from different nodes is used by the manager nodes to estimate

the location of the target. Location estimates over a period of time are used by the manager nodes to predict

target location at future time instants.

5. Creation of new potential regions. When the target gets close to exiting the current region, the estimates

of predicted target location are used to create one or more new regions. The new regions are put on alert

for target detection. When a target is detected by new region, the above steps are repeated. For example,

in Fig. 1, Region 1 creates Region 2. Since Region 2 has two possible predictions for future position of the

target, it creates Regions 3a and 3b.
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Figure 1: Location-centric approach for tracking an object moving through the sensor field.

The regions in location-centric routing facilitate local CSP. As we will see, the space-time signal statistics

associated with a query directly impact the size of the regions and the nature of information exchange between

nodes. The signal modeling framework discussed in the next section is precisely aimed at investigating this

interplay between information routing and processing.

3 A Signal Model for Sensor Measurements
3.1 Underlying Assumptions on Signal Statistics

Each signal source corresponds to a space-time signal ���������	��

� as a function of the spatial coordinates ���������
and time 
 . The network nodes sample ���������	��

� in space and time. Consider a spatial region of interest,� ���������������������! #" � ���$ #"&%'�(�������! #" � ���) #"$% associated with a network query involving a single

source. We assume that the space-time signal is a zero-mean complex circular Gaussian stationary field in the

spatial and temporal dimensions.1 While practical sources will exhibit non-stationarities, this is a reasonable

assumption over the space-time region of the query. The assumption of Gaussianity is equivalent to basing CSP

algorithms on second-order statistics which is a reasonable and tractable assumption for initial investigations.

Specifically, ���������	��

� is represented as

�����*�+�,�-

� �(.0/2143�56 /2143�5
.7/98+3�5
/98+3�5

.7/:3�56 /;3-5=<2>
�@? � �+? � ��A2��B)C 5ED!FG1 � B)C 5ED!FE8 � B+C 5HD$F4IGJ A � J A � J A (1)

where <
��A � �+A � ��A2� denotes the underlying spectral representation2 which satisfies

K��
<=>
��A � ��A � ��A2�

<
�

>
��A	L� ��A	L� �+A	LM� %=�(N

>
��A � �+A � ��A2��OP��A � � A	L� ��OP��A � � A	L� ��OP��A � A,L�� (2)

1We assume a complex signal field for generality; e.g., it would be applicable for signal sources created by passband transducers
that send independent information in the in-phase and quadrature components.

2Strictly speaking, (1) needs to be a Stieltjes integral with respect to a random measure Q4R	SETVU 1&W U 8)W UYX , where RZS
TVU 1&W U 8+W UYX is an
orthogonal increment process, but we use the above functional definition for simplicity.
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for some
N
>
��A � ��A � ��A2����� that represents the power spectral density (PSD) of the field. The signal correlation

function is related to the PSD via a 3D Fourier transform

�
>
��� �*��� �,����

� � K�� �����	�
� �*�+���
� �	��
��
��

�-� � �������	��

� %

� . /2143�56 / 1 3�5
. /*8�3�5
/ 8 3�5

. /:3�56 /;3-5
N
>
��A � ��A � ��A2��B C 5ED�
 F 1�� ��� F 8�� ��� F � I�� J A � J A � J A (3)

and both characterize the statistics of ���������	��
E� . In the above equations, � � and � � represent the spatial signal

bandwidths and � the temporal bandwidth. We assume that � � , � � and � are known a priori for all signal

sources of interest. This is a reasonable assumption about very basic characteristics of ���������	��

� . The power in

the signal field is defined as

� 5>
�(K ��� �����*�+�,�-

� � 5 %9� �

>
���P���P���Y� � .

/=1
.
/*8

.
/
N
>
��A � ��A � ��A2� J A � J A � J A�� (4)

3.2 Approximate Signal Modeling Via Spatial Coherence Regions

In order to study the implications of signal statistics for sensor network operation, we propose an approximate

signal model, based on spatial coherence regions (SCR’s) illustrated in Fig. 2, that captures the scales of signal

variation in the spatial coordinates. To a first approximation, the spatial scales of variation in ���@�*���	��
E� are

determined by the spatial bandwidths � � and � � — the larger the bandwidths, the faster the signal variation

in the corresponding dimension. The spatial bandwidth � � induces a coherence distance,
����� � �!  � � , over

which the signal remains strongly correlated in the � dimension. Similarly,
����� � �" & � � denotes the coherence

distance in the � dimension. Thus, as illustrated in Fig. 2, we partition the query region
�

into disjoint SCR’s,
# �%$&� ')(

, of size
����� � ���*��� �

over which the signal remains strongly correlated. On the other hand, as we will

see, the signal is approximately uncorrelated in distinct SCR’s. The uniform size of SCR’s follows from the

stationarity assumption. Furthermore, the size of each SCR decreases as the spatial bandwidths increase.

Dc,x

Dc,y

Dx

Dy

Figure 2: A schematic illustrating the notion of spatial coherence regions (SCR’s) over which ++T-, W/.&W�0 X remains strongly correlated

(approximately constant) as a function of T-, W/. X . The region of interest, 1 , of size 2 143 2 8 is partitioned into SCR’s, 5�17698 :<; , of size2�= 8 1 3 2�= 8 8 where 2�= 8 1?>A@CB�D*1 and 2�= 8 84>E@CB�D 8 denote the coherence distances.
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Specifically, we propose a piece-wise constant (PWC) approximation of the stationary signal that is commen-

surate with the size of SCR’s

����� � �������	��
E� ��� $7� ' � $&� ' � 
E���	� 698 : ���*�+��� � 
� 1�$
� 6 
� 1

� 8�'�� 6 
� 8

� $7� ' � 

���	� = 8 1 �@� ��� ����� � ���	� = 8 8 �@� ���2����� � � (5)

where �	� ���,� denotes the indicator function of the set � , � � � ���# #� ��� � � "��� � �  
, and � � � ���! #� ��� � �

" �� � �  
. The PWC signal � ��� � ���*�+�,�-

� is the projection of ���������	��

� onto the � >

� � � � � -dimensional spatial

subspace spanned by the orthogonal basis functions
#�� $7� ' ��������� � �	� = 8 1 ��� ��� ����� � ���	� = 8 8 ��� ���2����� � � ( . For

any 
 , the PWC model coefficients can be computed as

� $&� ' � 
E� �  ����� � ����� � . � 698 : �����*�+�,�-

� J � J � �
 ����� � ����� � . 
 $ ��� 3�5 � � = 8 1


 $ 6 � 3�5 � � = 8 1
. 
 ' ��� 3�5C� � = 8 8

 ' 6 � 3�5C� � = 8 8

���������	��

� J � J ��� (6)

Note that the distance-bandwidth (DB) products � � � � � � � and � � � � � � � are exactly analogous to the

time-bandwidth product ��� of the space of signals of duration � and bandwidth � [11].

The mean-squared error (MSE) of the PWC approximation in any SCR is independent of 
 and the particular

SCR (due to stationarity) and is given by

�! �"
>
�$# � . � = 8 1 3�56 � = 8 1 3�5

. � = 8 8&%('6 � = 8 843�5
K���� �����*�+�,�-

� � �	��� � ���*�+�,�-

� � 5 % J � J �

�  
� � � � .7/21)3-56 /21 3�5

.7/98-3�56 /*8+3�5
N
>
��A � ��A � � �  � sinc 5 ��A �  � � � sinc 5 �@A �  � � � % J A � J A � (7)

where
N
>
��A � ��A � � �*) N

>
��A � �+A � ��A2� J A is the joint spatial PSD of the signal field. The MSE is smaller for

smoother signal fields which have most of the power concentrated in the lower frequencies.

Remark: In developing the implications of the PWC approximation to sensor networks, we will assume

that the component processes � $&� ' � 

� are perfectly uncorrelated across distinct SCR’s. This assumption will

be justified by our subsequent analysis which shows that the impact of residual correlation between SCR’s

is relatively insignificant in a variety of aspects. By far the most dominant factor is the number of SCR’s,

� >
� � � � � � � ��� � � � � ��� � � � , in a given region that determines the number of independent spatial degrees

of freedom in ���������	��

� and ����� � � 
E� .
Temporal point sources. In general, the spatial and temporal signal characteristics can be arbitrary. However,

for this important class of signal sources they are intimately related. Such sources are characterized by a

underlying purely temporal source signal �,+!� 

� – the space-time signal is determined by �,+#� 

� via physical signal

propagation in space. Examples of such signals include acoustic signals as well as seismic (vibrational) signals
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produced by vehicles. The spatial signal bandwidth is determined by the temporal bandwidth via the speed of

signal propagation. For isotropic spatial propagation, �����*�+�,�-

� � �����!��
E� � � + � 
 � �  �� � where � ��� � 5 �0� 5
and

�
is the speed of propagation. Thus, the signal is constant on concentric circles around the source and is

thus is stationary along radial lines. It is easy to verify that that � # � �  �� , where � # is the spatial bandwidth

in the radial dimension, and � is the bandwidth of � +$� 
E� . The spatial coherence regions are concentric bands

around the source and the radial coherence distance
����� #

is given by
����� #'�"  � #����� � ��� � � . For example,

for an acoustic source with � ��� ��� Hz,
� #�� �)�	��� � whereas for � �(" � Hz,

� #'�" �
 � .

Distributed space-time sources. Such sources are truly distributed in space and time, such as the time-

varying concentration of a chemical agent in space, or signals generated by a distributed array of temporal

point sources or actuators. The temporal and spatial bandwidths of such distributed sources may be completely

independent. Consequently such sources may result in space-time signals that have sharp variations in space

and time. We will only consider smooth sources. Even if the space-time signals exhibit sharp variations, the

limited bandwidths of the sensors as well as the spacing between them may result in a smooth effective signal

that is sensed by the network.

3.3 Statistics of the PWC Approximation

We need to characterize statistics of � ��� � ���*�+�,�-

� to study the implications of PWC modeling. That is, we need

to characterize the second-order statistics of the component processes
# � $ ' � 
E� ( . We first define an intermediate

spatially smoothed field � ���*�+�,�-

� as

� �������	��
E� �  � ��� � � ��� � . . ����� L ��� L ��
E���	� = 8 1 ��� L � �,���	� = 8 8 �@� L � ��� J � L J � L � (8)

It follows from (6) that
# � $&� ' � 

� ( are obtained via sampling: � $&� ' � 
E� � � � � ����� � � �2����� � ��
E� . Note from (8) that

� �������	��
E� is also a stationary Gaussian field and its PSD is given by

N�
 ��A � �+A � ��A2� �(N
>
��A � ��A � ��A2� sinc5 � ����� � A � � sinc 5 � ����� � A � � �(N

>
��A � ��A � ��A2� sinc 5 ��A �  � � � sinc 5 ��A �  � � � (9)

where sinc �@�,� �  ����*�����,�  ��� . The correlation function of the processes
# � $7� ' � 

� ( is then given by

�
>
� � � ��� � ����
 % � K�� � $ � � $7� ' � � ' � 
 � ��

��� �$&� ' � 

� %=� � 
 ��� �  � � ��� �2 � � ����

�� .7/ 1 3�56 / 1 3�5

.0/ 8 3�56 / 8 3�5
.0/:3�56 /;3-5

N�
 ��A � �+A � ��A2��B C 5ED�
 � $ F 1 3E/ 1 � � ' F 8 3E/ 8 � � IVF�� J A � J A � J A � (10)

Consider the one dimensional process �����,� and its filtered version � ���,� to compare the correlation structure
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of �	��� � ���,� and �����	� . By substituting normalized frequency �
� � A �  � � in (3) we have

�
>
��� �  � � � � � � .

� 3�56 � 3�5
N
>
� � � � � �-B C 5HD � 1 � � J � � (11)

and similar normalized relation holds for � 
 ��� �  � � � and
N 
 � � � � � � . The correlation between PWC model

coefficients is then �
>
� � � % � � 
 ��� �  � � � . In partcular, � 5>

� ��� � � �
>
� � % � � 
 ���#��� �

>
���#� � � 5> . Fig. 3

illustrates the correlation structure for a truncated Gaussian PSD:
N
>
� � � � � � � B 6 � '1 3�� ' , � ��� ��� �)� � ���)� �$% ,

for three different values of � 5 = 0.1, 0.36, 1. The value of � 5 � �)�
	�� corresponds to half-power one-sided

bandwidth of
N
> being equal to � �  Y" . Fig. 3(a) and (b) plot the normalized (by the maximum value) PSD’sN

>
� � � � � � and

N�
 � � � � � � with respect to �
�
. Nyquist samples of �����	� are uncorrelated if and only if

N
> is

constant within the bandwidth (as � 5���
 in the Gaussian PSD). This is evident from Fig. 3(c) in which the

normalized correlation � >
��� �  � � �  � >

���Y� is plotted with respect to the normalized lag � � — the correlation

decreases as � 5 increases. Due to smoothing, � �@�,� exhibits higher correlation compared to �����,� , but not

significantly so, as evident from Fig. 3(d). The values of � 
 ��� �  � � � at integer values of � � correspond to the

correlation in PWC coefficients
# � $ ( : � >

� � � %*� � 
 ��� �  � � � .3 We note from Fig. 3(d) that � >
� � � %�� � for

� � � "
.

Spatial degrees of freedom in the signal field. The above correlation analysis quantifies our earlier observa-

tion that most of the spatial correlation in ���@�*���	��
E� is limited to within each SCR, and the residual correlation

across SCR’s is primarily limited to adjacent SCR’s for smooth signal spectra. Furthermore, this spatial cor-

relation structure is preserved by the PWC component processes
# � $&� ' � 

� ( . In fact, the PWC approximation�	�	� � �������	��
E� preserves the most important statistical information about ���������	��

� : spatial degrees of freedom

in
�

, which equal � >
� � � � � � � � � � � � � . The sampling theorem states that all spatial information about���@�*���	��
E� in contained in the samples � � � � � �-
 %=� ��� �  � � � �2 � � ��
E� , and these coefficients are approximately

uncorrelated as discussed above. The number of samples in
�

equals � > , which is precisely the number of

component processes � $&� ' � 

� in the PWC approximation (5). In fact, at any time 
 , � � � � � ��
 % corresponds to

the spatial sample at the center of the � � � � � -th SCR, whereas the PWC component � $7� ' � 

� in (6) corresponds

to the signal average in the SCR. The correlation analysis shows that the � $&� ' � 

� ’s corresponding to different

SCR’s are also approximately uncorrelated. Thus, there are approximately � >
� � ��� � � � � ��� � � � independent

spatial degrees of freedom in �����*�+�,�-

� over
�

which are preserved by �	�	� � �������	��
E� .4
3Note that the PWC coefficients + 6 >�� T�� B�D�1 X will be uncorrelated if ��� is constant within the bandwidth; that is, �:SET�� 1 D�1 X��@CB sinc ' T�� 1 X .4We note that similar approximations are widely used in the analysis of randomly time-varying communication channels in the guise

of block fading models (see, e.g., [12]). Fading refers to channel variation over space or time.
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Figure 3: Comparison of the normalized PSDs and correlation functions of the original ( ++T-,#X ) and filtered ( � T-, X ) one-dimensional

processes for �;SGT�� 1 D�1 X >��
������ % � � . The plots are for three values of 	 ' : 0.1, 0.36, and 1, and the corresponding values of 
 '� B 
 ' S

are 0.88, 0.81, 0.79. (a) Plot of �;SET�� 1 D�1 X B �
��� � S versus � 1 . (b) Plot of ���+T�� 1�D�1 X B ����� � � . (c) Plot of �-SET � , B�D�1 X B �-SET��)X versus� , . (d) Plot of � �+T � , B�D�1 X B � � T��)X .
4 Implications for Design of Sensor Networks

The distributed nature of signal processing in sensor networks warrants a fresh investigation of traditional

centralized approaches under network constraints. The proposed PWC signal modeling framework directly

facilitates such investigations. We now discuss the implications of the PWC model in a variety of fundamental

and practical issues in the design of sensor networks. Unless otherwise stated, in all cases we consider a

network query relating to a spatial region
� � � � � � �

of area � � � � � � � 5 . We assume that there are �
uniformly5 distributed nodes in

�
. The area of each SCR is � � � ����� � ����� � �  & � � � � � 5 . Thus, there are

� >
� �  � �:�(� � � � � � � � SCR’s,

# �%$&� ' (
, and there are � � � �  � > nodes in each SCR.

5The essential ideas apply to non-uniform distribution as well.
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4.1 Space-Time Sampling of the Signal Field

To extract all information about the signal field in
�

, there should be at least one node in each SCR; that

is, � � �  
. � � �  

corresponds to Nyquist sampling. Equivalently, the minimum required (Nyquist) node

density is � � � � nodes per unit area.6 Assume a higher than Nyquist node density ( � ���  � . An important

question is: How many and which node measurements in
�

should be processed to execute the query? If the

sensor measurements are noise-free, one node measurement in each SCR ( � ���  
) is sufficient. However, in

the presence of measurement noise, additional node measurements in each SCR are extremely advantageous

to improve the measurement signal-to-noise ratio. Let ��� � 

� � � � � 

� ��� � � 

� denote the noisy measurement at

the � -th node, � �! �	�
�	�P� � , where � � � 

� denotes an AWGN process with PSD � 5� . We assume that the noise

processes at different nodes are independent and identically distributed (i.i.d). Let �
��� $���� >
� � 5>

 � 5� denote

the measurement SNR at each node where � 5>
� K�� � � � � 

� � 5 % denotes signal power. Estimating � $&� ' � 

� in the

PWC model from the
# � � � 
E� ( corresponds to averaging all node measurements in

�%$&� '
�� $7� ' � 
E� � �

��� � 698 : ���
� 

� � � $&� ' � 

�9��� L$&� ' � 

� (12)

which is also the MMSE estimate of � $7� ' � 

� (within a scaling constant). This coherent averaging in each SCR

improves the effective �
��� $���� > by a factor of � � : �
��� $���� > � �
��� $���� >
 � � . Clearly the same principle

applies to temporal measurements at each node as well. Oversampling above the Nyquist rate, � samples/sec,

can improve the measurement SNR. Furthermore, since all the temporal samples are available at the same node,

optimal MMSE estimation (rather than simple averaging over the coherence interval � � �" & � ) could be used.

4.2 Nature of Information Exchange Within a Query Region

How should the sampled sensor measurements in
�

be processed to execute the query? In general, CSP of node

measurements will be needed and would require some form of information exchange between nodes. Temporal

measurements at each node are often processed in blocks of (Nyquist or oversampled) samples for the applica-

tion at hand. Information can be exchanged between nodes at two basic levels of abstraction: feature or symbol

level. A feature represents a lower-dimensional data representation (e.g. a lower dimensional transform of data

block at each node) that contains the relevant information in the signal. A symbol represents a compressed

version of the feature vector; for example, a quantized representation in the case of compression or a set of

local decisions in the case of decision making (detection and classification). The decisions may be soft, such as

a likelihood value, or hard, such as an index from a finite set.
6For non-uniform node spacing, a higher node density may be needed to preserve signal information.
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As noted above, noisy node measurements � � � 
E� or features within an SCR can be coherently averaged to

yield an effective feature for the SCR at the improved �
��� $���� > . This requires feature-level exchange between

nodes within each SCR. Furthermore, since the node measurements in different SCR’s are approximately un-

correlated, the mapping from the features to symbols may be done independently in different SCR’s without

signficant impact on performance. These independent symbols from different SCR’s can then be communicated

to a manager node for final processing. Thus, the PWC model suggests a hierarchical structure for informa-

tion exchange between nodes that is naturally suited to the communication constraints of the network: high-

bandwidth feature-level exchange is confined to spatially local nodes within each SCR, whereas low-bandwidth

symbol-level exchange is sufficient across spatially distant SCR’s. This structure on information exchange is

illustrated in Fig. 6.

4.3 Fundamental Limits on Information in the Signal Field

What is the communication burden on the network imposed by a query? An upper bound can be obtained

by characterizing the rate at which information is generated by the node measurements. This can be done by

computing the (differential) entropy rate [13] of the space-time signal field.

Consider Nyquist samples � � � � � ��� % � ��� �  � � � �2 � � ���  � � of the signal field. It can be shown that the

(differential) entropy7 of each sample, or the entropy rate of the signal field in � ����   �� ���
	 " is

�
>
��� � # � � � � � ��� %/( � �  

� � � � � .
/ 1

.
/ 8

.
/
	�
��9����B � � � � � N >

��A � �+A � ��A2��� J A � J A � J A � ����   �� ���
	 " � (13)

For a bandlimited white noise field (independent samples) with total power � 5> ,
N
>
��A � �+A � ��A2� � � 5>

 � � � � � � � ,
and the entropy rate in (13) becomes

�
>
� � ' � 	�
��=����B�� 5>

� � ����   �� ���
	 " (14)

which is the differential entropy of a zero-mean complex Gaussian random variable with variance � 5> . Since

there are � � � � spatial samples per unit area and � temporal samples per second, the entropy rate per unit area

per second is given by

������� � # �����*�+�,�-

� ( � � � � � � � � >
� .

/ 1
.
/ 8

.
/
	�
��2���*B � � � � � N >

��A � ��A � ��A2��� J A � J A � J A � ����  � 5  � � (15)

Thus, the entropy rate of the signal field over
�

is

� � �(� � � � ����� � � � � � � � � � � >
� � > �

�
> � ���&   � (16)

7The differential entropy � T�� X of a continuous random variable � can be misleading in terms of quantifying the number of bits
required to encode it, since it can be negative. However, the entropy of an � -bit quantization of � is approximately � T�� X���� [13].
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In particular, since there is a single spatial sample in each SCR, the entropy rate of the signal field in each SCR

is
�
>
�$#�� � � > �

����   .
How different is the entropy rate of the PWC approximation? Recall that the processes

# � $7� ' � 

� ( in the PWC

model correspond to Nyquist spatial samples of the filtered process
N�
 �������	��
E� . Consider Nyquist temporal

samples: � $&� '2� � %=� � $7� ' � �  � � . The entropy rate of the PWC approximation can be characterized as

�
>
� ��� � � � � # ����� �4� � � � ��� %/( � �  

� � � � � .
/ 1

.
/ 8

.
/
����B � � � � � 	�
��2� N�
 ��A � ��A � ��A2��� J A � J A � J A � ����   �� ���
	 "(17)

���<� ��� � � � � # ����� � �@�*���	��
E� ( �
� .

/ 1
.
/ 8

.
/
	�
��=���*B � � � � � sinc 5 ��A �  � � � sinc 5 ��A �  � � � N >

��A � �+A � ��A2��� J A � J A � A � ����  � 5   �� (18)

Combining (13) and (17) and using (9) we note that

�
>
� �

>
� ��� �:� . � 3�56 � 3-5

. � 3�56 � 3-5
	�
��

�  
sinc 5 � � � � sinc5 � � � ��� J � � J � � �(" � 
�
 � ����   �� ���
	 " (19)

which is independent of
N
> and shows that the difference in the per-sample entropy rates of ���������	��

� and

� �������	��
E� is about 2.77 bits/sample.8

The above calculations for the entropy rate of the PWC approximation include the spatial correlation between

the component processes. Under the uncorrelated assumption we get

�
>
� �	� � 6 ��� � 	�
�������B K�� � � ��� � � 

� � 5 %�� � 	�
��9� �*B�� 5
 � � ���&   �� ���
	 " (20)

� 	�
��	�	��B .
/ 1

.
/ 8

.
/ sinc 5 ��A �  � � � sinc 5 ��A �  � � � N >

��A � �+A � ��A2��� J A � J A � A�
 (21)

���<� �	� � 6 ��� � � � � � � � >
� �	� � 6 ��� � ���&  � 5   (22)

� � � �	� � 6 ��� � � > �
�
>
� ��� � 6 ��� � ����   �� (23)

To summarize, the above calculations provide ideal estimates of the entropy rates (assuming a sufficiently high

node density) and yield the following relations between per-sample rates

�
>
� �

>
� � ' � �

>
� ��� � � �

>
� ��� � 6 ��� ����� �

>
� �

>
� ��� � �(" � 
�
 � ���&   �� ���
	 " � (24)

However, the entropy rate over
�

of both ���������	��
E� and �	�	� � �������	��
E� is � � � > � � � � � � � � � � � � � � � and the

difference is only in the constant. Thus, the PWC model preserves the order of the entropy rate of the signal

field as a function of the spatial degrees of freedom.

8While the differential entropy can be negative, the difference of differential entropies of two random variables correctly quantifies
the difference in the number of bits required to encode them.
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Relation with network transport capacity. The above analysis shows that the rate at which information is

generated in
�

is � � � > � � . How does this relate to the communication capacity of the network of nodes in
�

?

Recent results in network information theory show that the transport capacity of a network of � nodes grows as� ��� � � (bit-meters/s) [14]. Suppose that
��� �(���

. Under the assumption of uniform node distribution, there

are � � � � � nodes in each spatial dimension. There are two ways in which the number of nodes can increase.

If the area of
�

remains fixed as � increases, then the spacing between nodes decreases. Since the information

rate of the signal field remains constant at � � � > � � � � � � � � � � � � � � � in this case, the network should be

able to transport this information for sufficiently large � . This corresponds to the case discussed in [15] to

show the feasibility of sensor networks. The more interesting case is when the average node spacing remains

constant. In this case, as � increases, the area of
�

and � > increase as � � � � . In this case, the � � � � � network

transport capacity is not sufficient to transport the information in the signal field. However, the results of [14]

ignore cooperation between nodes. More recent results (see e.g., [16]) indicate that such cooperative routing

schemes may yield � � � � capacity scaling, which would be sufficient to transport the signal field information

even in this challenging case.

4.4 Distributed Signal Compression and Estimation

In practice, the node measurements have to be quantized for digital communication over the network.9 What

does the signal model tell us about distributed estimation and compression of the signal field? Most existing

works on distributed compression in sensor networks focus on noise-free measurements (see, e.g., [18] and ref-

erences therein). If the node measurements are noisy, as is usually the case, the PWC model suggests strategies

for joint estimation and compression by averaging the node measurements in each SCR before quantization,

thereby improving the effect �
��� $���� > and performance.

Consider a noisy signal field modeled as � �������	��
E� � �����*�+�,�-

���������*�+�,�-

� , where ���������	��

� is a zero-mean

complex Gaussian noise field that is spatially and temporally white. Consider Nyquist samples of the noisy

field: � � � � � ��� % � � � �  � � � �2 � � ���  � � � � � � � � ��� % � � � � � � � � % where
K���� � � � � � ��� %C� 5 %=� � 5� . First, consider

independent (scalar) quantization of each Nyquist sample, � � ����� , where we suppress the indices because

of stationarity. We want to generate a quantized version
�� of � to within a prescribed per-sample distortion

J >
� K���� � � �� � 5 % . Rate-distortion theory [13] tells us that the minimum number of bits per sample required for

9Analog communication is also a possibility [17], but we do not discuss it here.
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a given � � J >
��� 5� is given by the rate-distortion function

�

>
� J >

� � 	�
�� � � 5�J >

 � 	�
��

� � 5> �
� 5�J > � � ����   �� ���
	 " (25)

The distortion per unit area per second is J � � � � � � � J > and the corresponding rate is
� � � J � � � � � � � � � >

� J >
� � ����  � 5   .

Thus, over
�

, the total distortion per second and the required minimum bit rate are

J � � � � � � J � � � > � J > (26)

� � � J � � � ���#����� � � J � � � � > �
�

>
� J >

� � ����   �� (27)

We note that J > quantifies the distortion in representing each noisy sample � � �4� � . The effective per-sample

distortion in representing the noise-free signal sample � is thus

J >
� � F F � J >

�
� 5� � (28)

Thus, J > in (25) should be replaced with J >
� � F&F � � 5� where � 5� � J >

� � F F ��� 5>
� " � 5� .

Now consider the component processes � $&� ' � 

� of the PWC approximation obtained by averaging the � � node

measurements in the � � � � � -th SCR. Nyquist temporal sampling yields � $&� '2� � % � � $&� ' � �  � � � � � � � � ��� % �
�	� � � � ��� % where we have approximated the samples of the averaged signal field with Nyquist samples of the

ideal smoothed field � �������	��
E� defined in (8). Note that
K���� �,� � � � ��� %C� 5 % � � 5� � � 5�  � � due to averaging.

Consider independent (scalar) quantization of the PWC samples � $&� '2� � % . For a given per-sample distortion

� � J >
� ��� � ��� 5
 ��� 5� , the required minimum bit rate is

�

>
� �	� � � J >

� ��� � � � 	�
��
� � 5
 �
� 5�  � �J >

� ��� � � � ���&   �� ���
	 " � (29)

The distortion per unit area per second is J �<� ��� �:� � � � � � J >
� ��� � and the required number of bits per unit area

per second are given by
� �<� ��� � � J �<� ��� � � � � � � � � � >

� �	� � . The total distortion and corresponding bit rate per

second over
�

are given for the PWC model by

J � � ��� � � � > � J >
� ��� � (30)

� � � ��� � � J � � � � > �
�

>
� �	� � � J >

� ��� � � � ����   �� (31)

In this case, we need to account for the bias introduced by spatial smoothing, in addition to the effective noise

�
, in order to compute the effective distortion. This can be done by computing the per-sample MSE due to PWC
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approximation which is given by �! �"	��� �:� K���� � � � � � ��� %#� � $7� '=� � % � 5 %=� � � � � �! �" >
�$#

, where �  �" >
�$#

is defined

in (7). Thus, for the PWC model

J >
� � F&F � J >

� ��� � �
� 5�  � � � �  &"	��� � (32)

�  �" ��� � � .
/ 1

.
/ 8

N
>
��A � ��A � � �- '� sinc 5 ��A �# � � � sinc 5 ��A �! � � � % J A � J A � � � 5>

� � 5
 ��� 5>
� (33)

We can substitute J >
� ��� �:� J >

� � F F � � 5�  � ��� �  �"	��� � in (29) where � 5�  � � � �  �" >
� J >

� � F F ��� 5>
� " � 5�  � � �

�  �"
> .

Comparing (27) and (31), we note that for a given J >
� � F&F the minimum bit rate over

�
is of the same order,� � � > � � , for both Nyquist samples and PWC model samples; the difference is only in the per-sample rate.

Furthermore, for a given J >
� � F F , the per-sample rate can be actually lower in the PWC model due to noise

reduction. Comparing (28) and (32) we note that for a given J >
� � F FJ >

� ��� � � J >� 5� �" '��� �
��� $���� >
��  � � (34)

where
� � �  &"	��� �E � 5>

�  
and �
��� $���� >

� � 5>
 � 5� . The relation (34) states that as long as �
��� $���� >

�   ��
(equivalently, � 5� � �  �"	��� � ), a larger J >

� ��� � compared to J > could be tolerated to maintain the same effective

distortion J >
� � F F . This is faciliated by increasing � � ; in particular, � � should be chosen larger than

 & �  �
� �
��� $���� >

� , the value at which the RHS of (34) is equal to zero. This suggests that for a given J >
� � F&F , PWC

coding would require smaller per-sample bit rate as long as �
��� $���� >
�   ��

. For �
��� $���� >
�   ��

, Nyquist

coding would be sufficient (no signal averaging within a SCR is needed). Fig. 4 compares Nyquist versus PWC

coding in two regimes to illustrate the advantage of signal averaging in PWC coding at low measurement SNRs.

More generally, it illustrates the importance of joint estimation and compression of noisy measurements in each

SCR.

Independent versus Joint Compression. The above analysis considers independent quantization of Nyquist

samples or PWC samples in each SCR. Since these samples have some residual correlation, better compression

performance may be attained by joint (vector) coding of the samples [13]. How much does joint quantization

buy us? We address this question by considering ideal joint quantization of Nyquist samples, assuming perfect

collaboration across SCR’s and ignoring the corresponding network communication cost. The per-sample rate-

distortion function can now be expressed in terms of the PSD of � �������	��
E� : N � � N
>
��� 5�  � � � � � . We can

express the per-sample distortion J > as

J >
�  
� � � � � .

/21
.
/*8

.
/ J >

�@A � �+A � �+A2� J A � J A � J A (35)
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Figure 4: Rate-distortion comparison of Nyquist coding versus PWC coding for � > ��������� = B 
 ' S >A@
	 
 '� B 
 ' S > ����
 (corresponding

to Fig. 3). (a) ����� 6���� S >A@ � @CB � > �
. As evident PWC coding yields a smaller per-sample bit rate for � =�� @CB T @
	 �
�����46���� S X >@ � 
 � . (b) ����� 6���� S > � > @ B � . In this case (and for larger ����� 6���� S ), Nyquist coding is sufficient; PWC coding cannot beat it no

matter how large � = is.

where J >
��A � ��A � �+A=� denotes the distribution of J > over the spatial and temporal bandwidths. For sufficiently

large number of samples (SCR’s), the required bit rate can be computed as [13]10

�

>
� C + � ' I � J >

� �  
� � � � � .

/21
.
/*8

.
/
	�
��

� � � � � � N � �@A � �+A � �+A2�J >
��A � ��A � ��A2� � J A � J A � J A � ����   �� ���
	 " (36)

J >
��A � ��A � ��A2� � � � �*�"!9� � � � � � N � �@A � �+A � �+A2��� (37)

where ! is chosen to satisfy (35) for a given J > . The solution captured by (36) and (37) corresponds to reverse

waterfilling in the spectral domain. It says that for a given J > , only those spectral components are allocated bits

at which � � � � � N � �@A � �+A � �+A2� is larger than ! . For sufficiently small distortion, J >
��A � ��A � ��A2� � ! � J > and

(36) reduces to

�

>
� C + � ' I � J >

� �  
� � � � � .

/ 1
.
/ 8

.
/
	�
��

� � � � � � N � ��A � �+A � ��A2�J > � J A � J A � J A � ����   �� ���
	 " � (38)

Comparing (25) and (38) for a given J > , we note that

�

>
� J >

� � �
>
� C + � ' I � J >

� �  
� � � � � .

/=1
.
/*8

.
/
	�
��

� ��� 5> �
� 5� �  � � � � �N
� ��A � ��A � ��A2� � J A � J A � J AA��� (39)

which we recognize as the Kullback-Liebler (K-L) distance (relative entropy) between a white PSD and
N
� ,

and it is thus always non-negative. The equality in (39) holds when � �@�*���	��
E� corresponds to bandlimited white

noise:
N
�
� � 5�  � � � � � � � . In this case, for J >

��� 5� , (38) reduces to (25) corresponding to independent (scalar)

10Following the discussion on joint compression of independent random variables (different frequencies in this context).
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quantization. We note that the difference in the performance of scalar versus vector quantization decreases at

lower �
��� $���� > . For
N
�
� N

> ( � 5� � � ), when
N
> is as in Fig. 3, the difference in (39) is 0.0069, .0325, and

0.3347 � ����   �� ���
	 " for � 5 �  ���)� 	�� and 1.

Thus, while vector quantization can yield a lower bit rate per sample than scalar quantization (for the same

J > ), the difference is relatively small. More importantly, the bit rates over
�

are � � � > � � for both independent

and joint quantization. The same conclusion applies to scalar versus vector quantization of PWC model samples

as well. Consequently, the advantage of vector quantization may not be significant when the number of SCR’s

( � > ) is large, or the �
��� $���� > is low, especially considering the significant communication burden imposed by

vector quantization. Furthermore, part of the gain of vector quantization may be obtained by joint quantization

of temporal samples (which does not require CSP). Vector quantization could be advantageous when � > is

relatively small and it would be more so at high �
��� $���� > .
4.5 Distributed Detection and Classification

Detection and classification of objects moving through the sensor field is an important application of sensor

networks, e.g., detection and classification of vehicles based on acoustic measurements [10]. The approximate

PWC model is more than adequate in such applications for signal sources that can be well-modeled as a sta-

tionary Gaussian field in the region of interest (e.g., acoustic measurements of vehicle engine sound [10]). As

mentioned earlier, in classification applications, feature vectors of sufficiently high dimension are extracted

from blocks of time series data at each node. For signals that are approximately stationary in time, a natural

choice of feature vectors is Fourier features obtained by Fourier transforming the blocks of data. The advantage

of Fourier feature vectors is that different feature components correspond to different frequencies and are ap-

proximately uncorrelated.11 The required dimension of the feature vectors increases with the number of sources

to be classified.

There are two main sources of error in distributed detection and classification: i) the noise in sensor mea-

surements, and ii) the inherent variability in the source signal. In [19, 20], we have shown that the optimal

classifier exploits the structure on information exchange suggested by the PWC model, illustrated in Fig. 6, to

naturally combat the two sources of error. First, the feature vectors from a subset of � � nodes in each SCR are

coherently averaged to yield an effective feature vector at a higher effective �
��� $���� > . Second, the statistically

11It is well-known that complex sinusoids serve as eigenfunctions of stationary processes for sufficiently large values of � D , where
� is the block duration and D is the signal bandwidth. The feature vectors then correspond to a subset of � D frequency components
with significant power [10].
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independent local node decisions (hard or soft, based on the effective feature) from the � > SCR’s are combined

(at the manager node) to combat the inherent variability in the signal. In this approach, the differences in tem-

poral PSD’s of the different sources are exploited (via the feature vectors) to facilitate discrimination between

classes, whereas the multiple node measurements are exploited to increase the reliability of final decisions at

the manager node.

The results in [19, 20] yield two important conclusions. First, fusion of decisions from different SCR’s is

the most important factor influencing the reliability of the final decision — the high-bandwidth feature-level

exchange within each SCR (to improve �
��� $���� > ) can be avoided in many situations. Second, a moderate

number (20-50) of relatively unreliable12 local node decisions (hard or soft) from different SCR’s can be com-

bined at the manager node (even via noisy communication links) to yield remarkably reliable13 final decisions.

Fig. 5, based on real acoustic data14 illustrates this remarkable advantage of fusion of decisions from different

SCR’s (see [19, 20] for a detailed discussion). These encouraging initial results also underscore the oppor-

tunity to leverage the vast literature on distributed detection, data fusion and pattern classification (see, e.g.,

[21, 22, 23, 24, 25, 26]) in the context of the specialized constraints of sensor networks.
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Figure 5: Probability of error (of misclassification among 3 vehicles) as a function of � > � S (number of SCR’s) for noise-free
soft and hard decision fusion, and noisy hard decision fusion. In noisy hard decision fusion, the decisions are communicated over an
AWGN channel and three different communication SNR’s are shown: ����� =�� 6�6 > � W � W @ � dB. � � for � > @ reflects the reliability
of individual node decisions. (a) ����� 6���� S = 0dB. (b) ����� 6���� S = 10dB.

12With error probabilities as high as 0.2 or 0.3
13With an error probability of 0.01 or smaller. See Fig. 5.
14Collected as part of the DARPA SensIT program.
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4.6 Communication and Routing Strategies

The power and bandwidth available at each node are the key resources from a communication perspective. As

illustrated in Fig. 6, the nature of information exchange suggested by the PWC signal model is naturally suited to

the location-centric information routing paradigm: (high rate) feature-level exchange is limited to local nodes

within each SCR and (low rate) symbol-level information exchange is sufficient between (spatially distant)

different SCRs. Location-centric routing can directly enable this bandwidth efficient information exchange

via manager nodes in each SCR. Thus, given the knowledge of the spatial signal bandwidths associated with

a network query, PWC signal modeling suggests a fixed matched interface between collaborative information

processing and routing. For example, as suggested by [15] and our discussion in Section 4.4, joint compression

and routing could be exploited in each SCR. This connection can also be exploited to assess the communication

cost of CSP algorithms and to determine optimal region sizes in location-centric routing (Fig. 1) to facilitate

CSP.

The PWC model also suggests natural communication strategies for communicating the symbol-level infor-

mation from each SCR to a destination node or region. We illustrate the basic idea in one scenario in Fig. 6.

Consider a query that requires information from the eight SCR’s on the boundary to be communicated to a

single node in the SCR at the center. If each SCR is of a sufficiently small size, the � � nodes in each SCR could

collaborate to send its information to the destination node. Suppose that all nodes can transmit at a power �

and have a communication bandwidth � . Then, each SCR � destination link can be thought of as a coherent

MISO (multiple input single output) communication link with � � transmitting nodes. If we assume AWGN

node-to-node communication links, then the capacity of this MISO link is given by (ignoring path loss)

� $ �

>
+ � � 	�
��*�  � � 5� �
��� � + $?$  � � � ����   (40)

where �
��� � + $ $ � �  � 5' is the SNR of each node-to-node link. Effectively, all the � � nodes in the SCR

collaborate to act as a coherent virtual node array that beamforms the information to the destination. Since

� random variables are quantized per second in each SCR, this requires � � >
� ��� � � � $ �

>
+ (assuming PWC

coding) for reliable communication of this information, which is feasible.15

Since different SCR’s are sending independent information to the destination node, the communication link

from the � > (=8) SCR’s to the destination node is a multiple access (MAC) communication link whose sum

15We note that for this SCR � destination link, the results of [17] show that uncoded communication of the analog Gaussian source
(rather than coded communication of compressed symbols) is optimal from a rate-distortion viewpoint.
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capacity [13] is given by

� $���� 6 $ �

>
+ � � 	�
��*�  � � > � 5� �
��� � + $ $  � � � ���&   �� (41)

Thus, we require � > �
�

>
� ��� � � � $���� 6 $ �

>
+ to reliably communicate the sensed information from the � > SCRs

to the destination node. Here we see a problem: the source information rate is increasing as � � � > � whereas

the capacity of the MAC-MISO link is growing as � � 	�
��=� � > �-� . If all nodes have the same communication

capabilities, this presents a fundamental bottleneck at the destination node, which cannot be avoided if we

insist on sending information from a growing number of independent SCR’s to a single node. The only way

to sustain the information flow is by matching the number of independent SCRs in the source to the number

of independent receiving nodes in a (distributed) destination. More sophisticated collaborative communication

strategies are needed to address this key challenge in network communication.

Figure 6: Illustration of the implications of the PWC signal model for the design of sensor networks. The big square represents
a region 1 > 2 1 3 2 8 associated with a query, and the smaller squares depict the SCR’s. The size of each SCR, T @CB�D 1 X 3T @CB�D 8 X , corresponds to a Nyquist spatial bin and decreases with increasing spatial signal bandwidths. The number of SCR’s, � S >2 1 D�1 2 8CD 8 , represents the spatial degrees of freedom in the signal field. Each SCR represents a single spatial degree of freedom
– information worth a single random variable is sensed in each SCR. The nature of of information exchange suggested by the PWC
model is naturally suited to the communication network constraints. Joint processing of high-bandwidth feature-level data is limited
to within SCR’s, and generates information at the low-bandwidth symbol level (compressed signal representation or local decisions).
The independent symbols from different SCR’s can then be communicated to the destination node/region for final processing. From
an information processing perspective, node measurements in each SCR may be averaged to improve the measurement SNR. From a
communication perspective, the nodes in each SCR may collaborate as a virtual coherent node array (and improve the communication
SNR) to transport the symbol-level information to the destination node or region.

5 Conclusion

The two vital operations in a sensor network, information processing and information routing, are intimately

coupled and the nature of interplay between them is determined by the statistical characteristics of the signal

field sensed by the nodes. In this paper, we have taken a first step in investigating the nature of the interplay

under the assumption of a stationary Gaussian space-time signal field. We have proposed a PWC signal model

20



that partitions a region of interest into SCR’s. The size of each SCR is inversely related to the spatial signal

bandwidths and the number of SCR’s quantifies the independent spatial degrees of freedom in the signal field

(and hence the rate at which information is generated by it). As summarized in Fig. 6, the PWC model provides

several useful insights. In particular, the primary communication burden of distributed signal processing and

routing is confined to within SCR’s in which high-bandwidth (feature-level) information exchange is most

advantageous. Lower-bandwidth (symbol-level) information exchange is sufficient across different SCR’s.

The PWC model makes two approximations about spatial signal characteristics: i) it ignores signal variation

within each SCR, and ii) it ignores residual correlation across SCR’s. This was motivated by the desire to

minimize the communication cost associated with distributed signal processing. We have quantified the error

introduced by this approximation in various contexts. Our results suggest that capturing finer spatial signal

variation in each SCR, such as in signal estimation and compression, becomes important only at sufficiently

high measurement SNR’s and/or sufficiently low allowable distortion. Similarly, capturing the residual cor-

relation across SCR’s, such as in joint signal compression, becomes important when the number of SCR’s is

small and/or the measurement SNR is sufficiently high. The impact of PWC modeling is least significant in the

context of distributed decision making.

The insights revealed by the PWC model suggest several directions for future work. One interesting direction

is to develop a hierarchical framework for distributed signal processing that combines PWC modeling at multi-

ple scales, as in wavelet-based signal processing [27]. Another interesting direction is to refine the signal model

to account for two effects that are commonly encountered in the case of point sources: i) the effect of signal

path loss, and ii) the effect of source mobility. Finally, including node-related attributes, such as remaining

battery life, and directional sensing, could be fruitfully exploited in both information processing and routing.
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