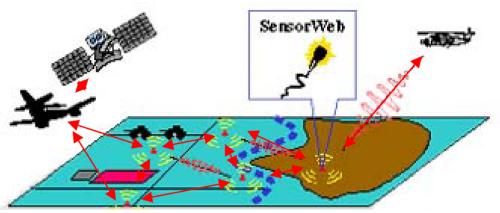
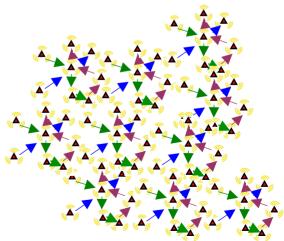


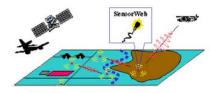
Scalability and information theory for networks with large numbers of nodes

Liang-Liang Xie and P. R. Kumar Dept. of Electrical and Computer Engineering, and Coordinated Science Lab University of Illinois, Urbana-Champaign

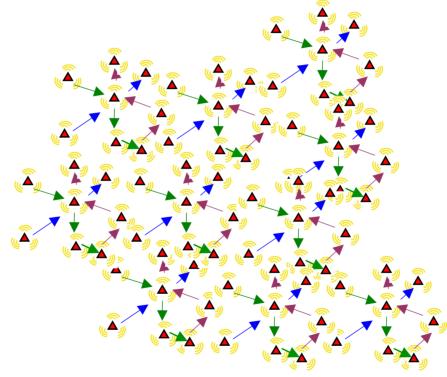
SensorWeb MURI Review Meeting, June 14, 2002

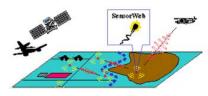

Phone217-333-7476, 217-244-1653 (Fax)Emailprkumar@uiuc.eduWebhttp://black.csl.uiuc.edu/~prkumar


MURI Review: SensorWeb Data Fusion in Large Arrays of Microsensors June 14, 2002


Sensor web networks

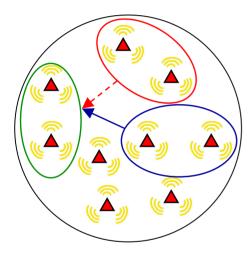
- Networks with large numbers of sensors
 - Potentially large number of information gathering nodes
 - Connected by wireless medium
 - Possibly low power nodes
- IT-3: Wireless networks, Network communication and information theory
- RCA 2&3: Fundamental limits on fusion,
 Network Info Theory, Tradeoffs in local vs. global processing



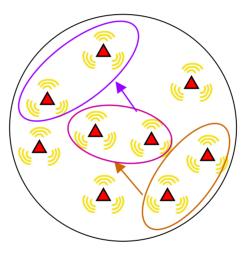


Large wireless networks

• Large wireless networks formed by nodes with radios



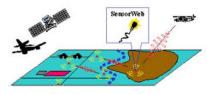
- There is no *a priori* notion of "links"
- All nodes simply radiate energy



How should nodes cooperate?

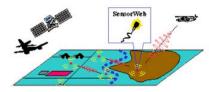
Nodes can cooperate in complex ways

Nodes in Group A can help cancel the interference of nodes in Group B at nodes in Group C

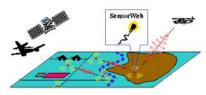

Nodes in Group D coherently transmit to relay packets from Group E to Group F

Very complicated feedback strategies are possible

while

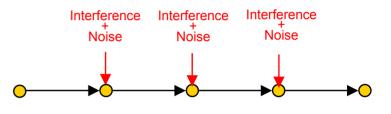

- Even notions such as "relaying," "broadcasting," "interference cancellation,"
 "coherent transmission," etc., may be too simplistic
- The problem has all the complexities of team theory, partially observed systems, etc

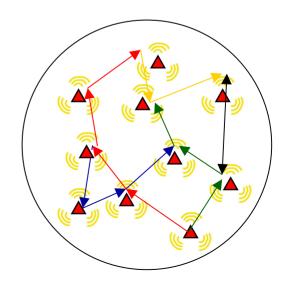
- How should nodes cooperate in maximizing information transfer in a wireless network?
 - The strategy space is infinite dimensional
 - If Information Theory can tell us what the basic strategy should be then we can develop *protocols* to realize the strategy


- How much information can be transported in a wireless network?
 - What are the fundamental limits to information theory?
 - How far is current technology from the optimal?
 - When should we quit trying to do better?

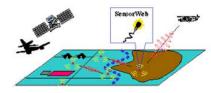
Key Results

- If there is any absorption in the medium or large attenuation
 - Transport capacity grows like $\Theta(n)$ where n = number of nodes
 - Area grows like Ω(n)
 - Multi-hop operation is optimal
- If there is no absorption, and attenuation is very small
 - Transport capacity can grow like $\Theta(n^{\theta})$ for $\theta > 1$
 - Coherent multi-stage relaying with interference cancellation can be optimal
- Along the way
 - Total power used by a network bounds the transport capacity
 - or not
 - A feasible rate for a Gaussian multiple relay channel

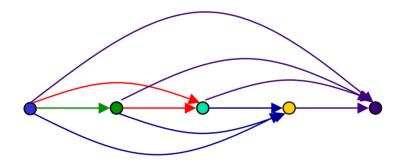

Current proposal: Multi-hop transport

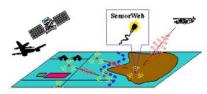


- Multi-hop transport
 - Packets are relayed from node to node
 - A packet is fully decoded at each hop
 - All interference from all other nodes is simply treated as noise


- This choice for the mode of operation gives rise to
 - Routing problem
 - Media access control problem
 - Power control problem

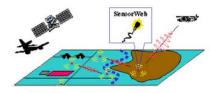
• • • •



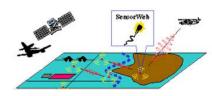


Coherent multi-stage relaying with interference cancellation

- All upstream nodes coherently cooperate to send a packet to the next node
- A node cancels all the interference caused by all transmissions to its downstream nodes


The Transport Capacity: Definition

- Source-Destination pairs
 - $(s_1, d_1), (s_2, d_2), (s_3, d_3), \dots, (s_l, d_l)$
- Distances
 - $\rho_1, \rho_2, \rho_3, \dots, \rho_l$ distances between the sources and destinations
- Feasible Rates
 - $(R_1, R_2, R_3, \dots, R_l)$ feasible rates for these source-destination pairs
- Distance-weighted sum of rates


- Transport Capacity
 - $C_T = \sup \Sigma_i R_i \rho_i$
 - Supremum is taken over all feasible rates (*R*₁, *R*₂, *R*₃, ..., *R*_l)

The Transport Capacity

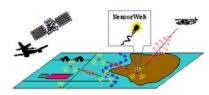
- $C_T = \sup \Sigma_i R_i \rho_i$
 - Measured in bit-meters/second or bit-meters/slot
 - Analogous to man-miles/year considered by airlines
 - Upper bound to what network can carry
 - irrespective of which sources, destinations and their rates
 - Satisfies a scaling law
 - Conservation law which restricts what network can provide
 - Irrespective of whether it is of prima facie interest
 - However it is also of natural interest
 - Allows us to compare apples with apples

Models where packets "collide"

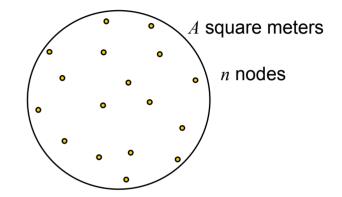
or

 r_1

 $(l+\Delta)r_1$


 $(1+\Delta)$

- In some technologies Packets collide destructively
 - Example: If all interference is regarded as noise



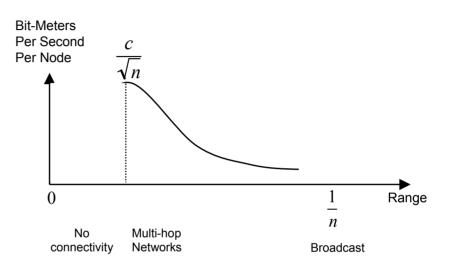
- Reception is successful if
 - Receiver not in vicinity of two transmissions
 - Or SINR > β
 - Or Rate depends on SINR

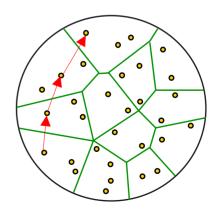
Scaling laws under "collision" model

- Theorem (Gupta-Kumar 2000)
 - Disk of area *A* square meters
 - *n* nodes
 - Each can transmit at *W* bits/sec

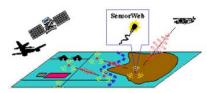
• <u>Best Case</u>: Network can transport $\Theta(W\sqrt{An})$ bit-meters/second

• <u>Random case</u>: Each node can obtain a throughput $\Theta\left(\frac{1}{\sqrt{n\log n}}\right)$ bits/second


Square root law

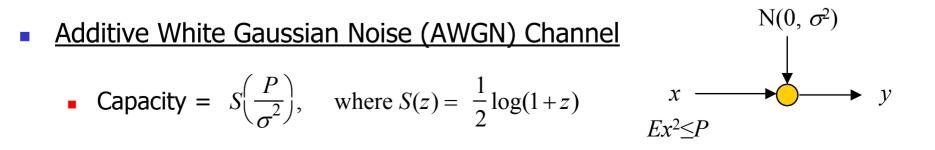

- Transport capacity doesn't increase linearly, but only like square-root
- Each node gets $\frac{c}{\sqrt{n}}$ bit-meters/second

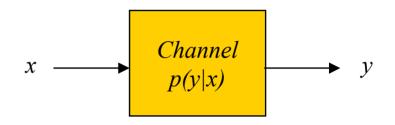
Optimal operation under "collision" model


SensorWeb

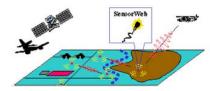
- Optimal operation
 - Multi-hop is optimal
- Optimal multi-hop architecture
 - Group nodes into cells of size log n
 - Common power level for all nodes is nearly optimal
 - Power should be as small as possible subject to network connectivity
 - Just enough power to reach all points in neighboring cell
 - Can route packets along nearly straight line path from cell to cell

But interference is not interference

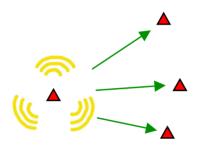

- Receiver can first decode loud signal perfectly
- Then subtract the loud signal
- Then decode the soft signal perfectly
- So excessive interference can be very good
- Packets do <u>not</u> destructively collide
- Interference is information!

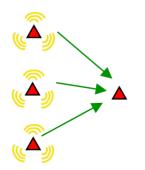

- So we need an information theory for networks to determine
 - How to operate wireless networks
 - How much information wireless networks can transport

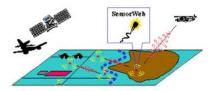
Shannon's Information Theory

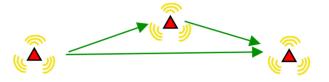

- Shannon's Capacity Theorem
 - Channel Model p(y|x)
 - Discrete Memoryless Channel
 - Capacity = $Max_{p(x)}I(X;Y)$ bits/channel use

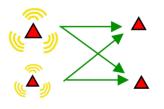
$$I(X;Y) = \sum_{x,y} p(x,y) \log\left(\frac{p(X,Y)}{p(X)p(Y)}\right)$$



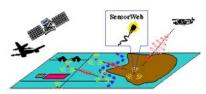

Network information theory: The triumphs


Gaussian broadcast channel

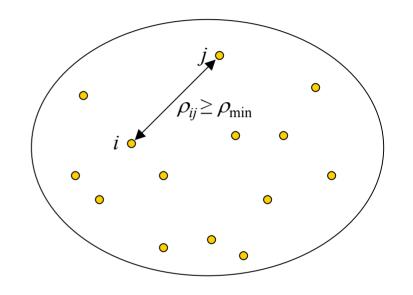

Gaussian multiple access channel


Network information theory: The unknowns

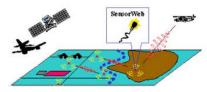
The simplest relay channel


The simplest interference channel

 Systems being built are much more complicated and the possible modes of cooperation can be much more sophisticated

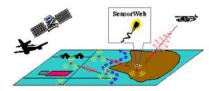

- How to analyze?
- Need a large scale information theory

Model of system: A planar network


- *n* nodes in a plane
- ρ_{ij} = distance between nodes *i* and *j*
- Minimum distance between nodes

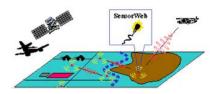
$$\rho_{ij} \ge \rho_{\min} > 0$$

Or a <u>linear network</u>



Signal path loss attenuation with distance:

Attenuation over a distance
$$\rho = \frac{e^{-\gamma\rho}}{\rho^{\delta}}$$


- ρ = distance between transmitter and receiver
- $\gamma \ge 0$ is the absorption constant
 - Loss of $20\gamma \log_{10} e$ db per meter
- Generally $\gamma > 0$ since the medium is absorptive unless over a vacuum
- $\delta > 0$ is the path loss exponent

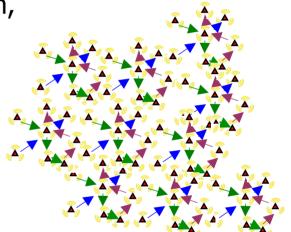
The Results

When there is absorption or a large path loss

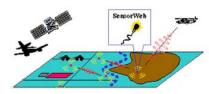
The total power bounds the transport capacity

<u>Theorem</u>

• Suppose $\gamma > 0$, I.e., there is some absorption,


or $\delta > 3$ if there is no absorption at all

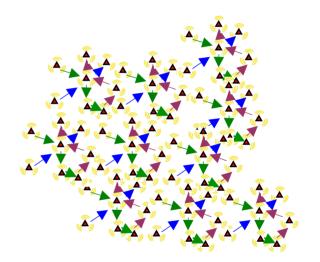
Then for all Planar Networks


$$C_T \leq \frac{c_1(\gamma, \delta, \rho_{\min})}{\sigma^2} \cdot P_{total}$$

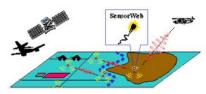
where

$$c_{1}(\gamma, \delta, \rho_{\min}) = \frac{2^{2\delta+7}}{\gamma^{2} \rho_{\min}^{2\delta+1}} \frac{e^{-\gamma \rho_{\min}/2} (2 - e^{-\gamma \rho_{\min}/2})}{(1 - e^{-\gamma \rho_{\min}/2})} \quad \text{if } \gamma > 0$$
$$= \frac{2^{2\delta+5} (3\delta-8)}{(\delta-2)^{2} (\delta-3) \rho_{\min}^{2\delta-1}} \quad \text{if } \gamma = 0 \text{ and } \delta > 3$$

O(n) upper bound on Transport Capacity

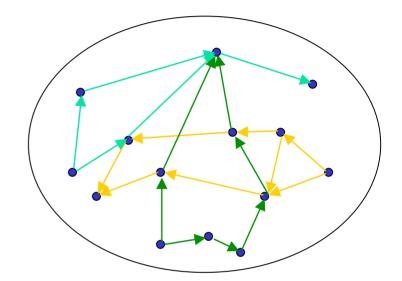

Theorem

- Suppose $\gamma > 0$, there is some absorption,
- Or $\delta > 3$, if there is no absorption at all
- Then for all Planar Networks


$$C_T \leq \frac{c_1(\gamma, \delta, \rho_{\min})P_{ind}}{\sigma^2} \cdot n$$

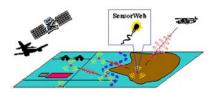
where

$$c_{1}(\gamma, \delta, \rho_{\min}) = \frac{2^{2\delta+7}}{\gamma^{2} \rho_{\min}^{2\delta+1}} \frac{e^{-\gamma \rho_{\min}/2} (2 - e^{-\gamma \rho_{\min}/2})}{(1 - e^{-\gamma \rho_{\min}/2})} \quad \text{if } \gamma > 0$$
$$= \frac{2^{2\delta+5} (3\delta-8)}{(\delta-2)^{2} (\delta-3) \rho_{\min}^{2\delta-1}} \quad \text{if } \gamma = 0 \text{ and } \delta > 3$$



What can multihop transport achieve?

<u>Theorem</u>

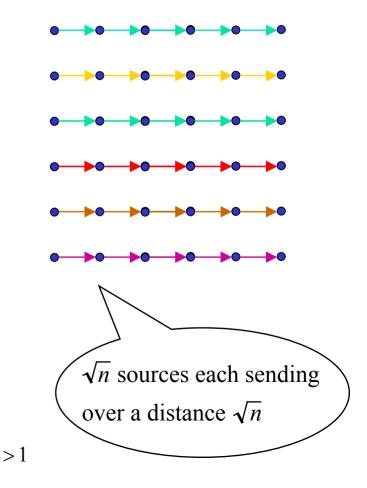

- A set of rates (R₁, R₂, ..., R_l) can be supported by multi-hop transport if
- Traffic can be routed, possibly over many paths, such that

- No node has to relay more than $S\left(\frac{e^{-2\gamma\overline{\rho}}P_{ind}/\overline{\rho}^{2\delta}}{c_3(\gamma,\delta,\rho_{\min})P_{ind}+\sigma^2}\right)$
- where $\overline{\rho}$ is the longest distance of a hop

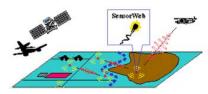
and
$$c_3(\gamma, \delta, \rho_{\min}) = \frac{2^{3+2\delta} e^{-\gamma \rho_{\min}}}{\gamma \rho_{\min}^{1+2\delta}}$$
 if $\gamma > 0$
$$= \frac{2^{2+2\delta}}{\rho_{\min}^{2\delta}(\delta-1)}$$
 if $\gamma = 0$ and $\delta > 1$

Multihop transport can achieve $\Theta(n)$

Theorem


- Suppose $\gamma > 0$, there is some absorption,
- Or $\delta > 1$, if there is no absorption at all
- Then in a regular planar network

$$C_T \ge S \left(\frac{e^{-2\gamma} P_{ind}}{c_2(\gamma, \delta) P_{ind} + \sigma^2} \right) \cdot n$$


where

$$c_{2}(\gamma, \delta) = \frac{4(1+4\gamma)e^{-2\gamma} - 4e^{-4\gamma}}{2\gamma(1-e^{-2\gamma})} \quad \text{if } \gamma > 0$$

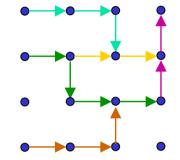
$$=\frac{16\delta^2 + (2\pi - 16)\delta - \pi}{(\delta - 1)(2\delta - 1)} \quad \text{if } \gamma = 0 \text{ and } \delta$$

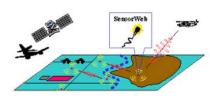
Optimality of multi-hop transport

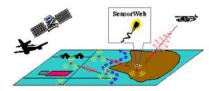
- Corollary
 - So if $\gamma > 0$ or $\delta > 3$
 - And multi-hop achieves $\Theta(n)$
 - Then it is optimal with respect to the transport capacity
 - at least up to order

Example

- 0-0-0-0-0-0-0-0-0-0

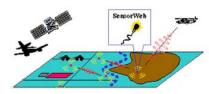

Multi-hop is almost optimal in a random network


<u>Theorem</u>


- Consider a regular planar network
- Suppose each node randomly chooses a destination
 - Choose a node nearest to a random point in the square
- Suppose $\gamma > 0$ or $\delta > 1$
- Then multihop can provide $\Omega\left(\frac{1}{\sqrt{n\log n}}\right)$ bits/time-unit for every

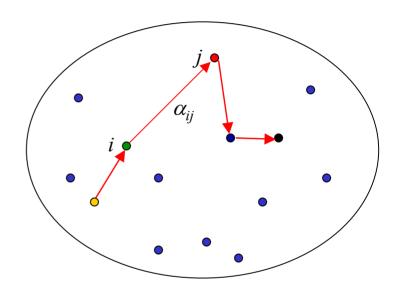
source with probability ${\rightarrow}1$ as the number of nodes n ${\rightarrow} \infty$

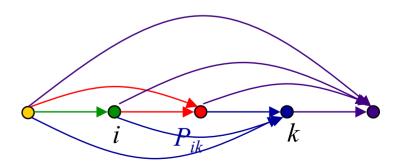
- Corollary
 - Nearly optimal since transport achieved is $\Omega\left(\frac{n}{\sqrt{\log n}}\right)$

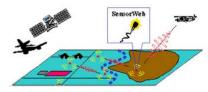


What happens when the attenuation is very low?

A feasible rate for Gaussian multiple-relay channel

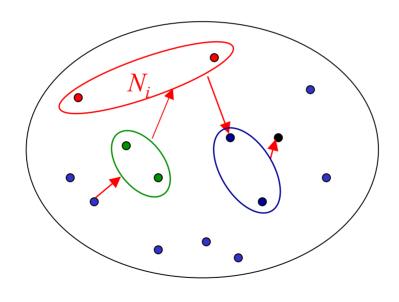



Theorem


- Suppose α_{ij} = attenuation from *i* to *j*
- Choose power P_{ik} = power used by *i* intended directly for node k
- where $\sum_{k=i}^{M} P_{ik} \le P_i$
- Then

$$R < \min_{1 \le j \le n} S\left(\frac{1}{\sigma^2} \sum_{k=1}^{j} \left(\sum_{i=0}^{k-1} \alpha_{ij} \sqrt{P_{ik}}\right)^2\right)$$

is feasible



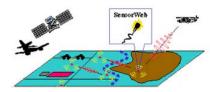
A group relaying version

Theorem

• A feasible rate for group relaying

•
$$R < \min_{1 \le j \le M} S \left(\frac{1}{\sigma^2} \sum_{k=1}^{j} \left(\sum_{i=0}^{k-1} \alpha_{N_i N_j} \sqrt{P_{ik} / n_i} \cdot n_i \right)^2 \right)$$

Unbounded transport capacity

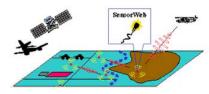

Theorem

- If $\gamma > 0$, there is no absorption at all,
- And $\delta < 3/2$
- Then C_T can be unbounded in regular planar networks even for fixed P_{total}

Theorem

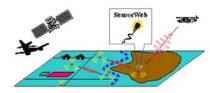
- If $\gamma > 0$ and $\delta < 1$ in regular planar networks
- Then no matter how many many nodes there are
- No matter how far apart the source and destination are chosen
- A fixed rate R_{min} can be provided for the single-source destination pair

Networks with transport capacity $\mathcal{O}(n^{\theta})$

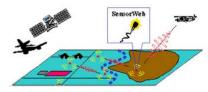

• <u>Theorem</u>

- Suppose $\gamma = 0$
- For every $1/2 < \delta < 1$, and $1 < \theta < 1/\delta$
- There is a family of linear networks with

$$C_T = \mathcal{O}(n^{\theta})$$


 The optimal strategy is coherent multi-stage relaying with interference cancellation

Concluding Remarks


- Studied networks with arbitrary numbers of nodes
 - Explicitly incorporated distance in model
 - Distances between nodes
 - Attenuation as a function of distance
- Make progress by asking for less
 - Instead of studying capacity region, study the transport capacity
 - Instead of asking for exact results, study the scaling laws
 - The exponent is more important
 - The preconstant is also important but is secondary so bound it
 - Draw some broad conclusions
 - Optimality of multi-hop when absorption or large path loss
 - Optimality of coherent multi-stage relaying with interference cancellation when no absorption and very low path loss
- Open problems abound
 - What happens for intermediate path loss when there is no absorption
 - The channel model is simplistic

U. S. Army interactions

- Panel Member, Triennial Research Strategy Planning Workshop U.S. Army Research Office, Computing and Information Sciences Division, Charleston, SC, Jan 3-5, 2001.
- Board of Visitors of the U.S. Army Research Office, 6.1 Mathematical Sciences Program Review, May 21, 2001, Research Triangle Park

Other events

Plenary Talks

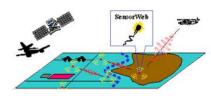
- Plenary Talk, SIAM Annual Meeting, July 9-13, 2001, San Diego
- Keynote speaker, ITCOM + OPTICOMM 2001: The Convergence of Information Technologies and Communications, Denver, August 19-24, 2001.
- Plenary Lecture, The Fifth Stochastik-Tage: German Open Conference on Probability and Statistics, Magdeburg, Germany, March 19-22, 2002
- Plenary Talk, 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, July 9-13, 2002.

Invited Talks

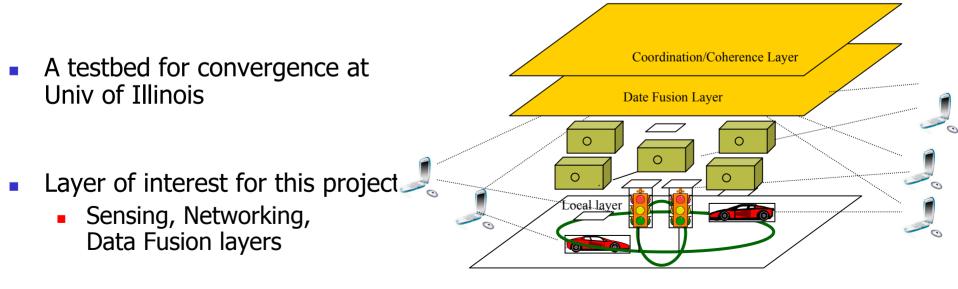
- Conference on Stochastic Networks, June 19-24, 2000, University of Wisconsin, Madison
- NSF/ONR Workshop on Cross-Layer Design in Adaptive Ad Hoc Networks: From Signal Processing to Global Networking, May 31-June 1, 2001, Cornell University
- Symposium on Complex Systems Modeling and Optimization in the Information Age To Celebrate 45 Years of Outstanding Contribution of Prof. Yu-Chi "Larry" Ho, June 23-24, 2001, Harvard University
- NSF Workshop on an Infrastructure for Mobile and Wireless Systems , The Convergence of Information Technologies and Communications, Scottsdale, Arizona, Oct. 15, 2001.
- Stochastic Theory and Control Workshop, University of Kansas, Oct. 18-20, 2001.
- Massively Distributed Self-Organizing Networks, May 13-17, 2002. Institute for Pure and Applied Mathematics, University of California, Los Angeles
- Conference on Stochastic Networks, June 24-29, 2002, Stanford University

Others

- Panel, Future Directions in Control and Dynamical Systems, June 16-17, 2000
- Chair and Organizer, Workshop on Wireless Networks, Institute for Mathematics and its Applications, Minneapolis, August 8-10, 2001.
- Illinois/Berkeley Student Workshop on Wireless Networks and Convergence, , CSL, Urbana, November 17-18, 2001
- European Wireless Conference, Florence, Italy, Feb 26-28, 2002.

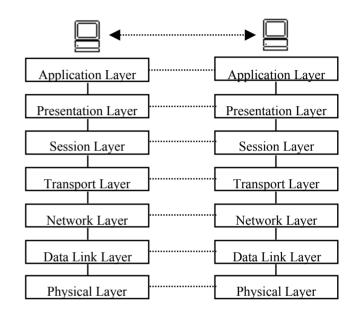

Issues: Analysis, Protocols and Architecture of convergence

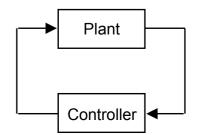
- How should ad hoc networks be operated?
 - Design of operating protocols which adapt to the environment


- Towards convergence of communication, computing. sensing and actuation
 - Abstractions and Architecture

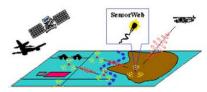
An experimental testbed for networking sensors

- Next step in IT revolution: Convergence of communication, computing, and control
- Sensors and actuators galore communicating over wireless and interacting with physical world
- Issue: How do we organize such distributed real-time systems?
 - Eg. If traffic lights and cars and sensors can talk to each other, how would you architect the system?


What are the right abstractions? What is the architecture?


The importance of architecture

- Success of Internet is due to its architecture
 - Notion of peer-to-peer protocols
 - Hierarchy of layers
 - Allows plug-and-play
 - Proliferation of technology


- Success of serial computing
 - von Neumann bridge (Valiant)
 - Hardware designers and software designers need only to conform to abstractions of each other
- Control system paradigm
 - Plant and controller separation

Papers can be downloaded from

http://black.csl.uiuc.edu/~prkumar

For hard copy send email to

prkumar@uiuc.edu