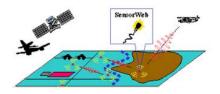


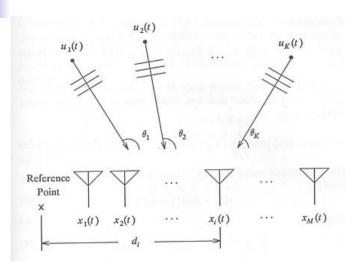
Optimization-based Approach to Source Localization and Self-Calibration in Distributed Arrays

Müjdat Çetin Stochastic Systems Group, M.I.T.

SensorWeb MURI Review Meeting June 14, 2002



Source Localization Goals

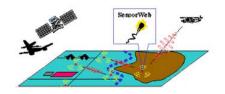


Context:

- Acoustic sensors
- Narrowband/broadband signals
- Far-field/near-field sources
- Any array configuration

Objectives for the new approach:

- Superior source localization performance (e.g. resolution)
- Robustness to limitations in data quality or quantity
- Self-calibration capability to handle uncertainties in sensor locations



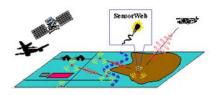
Why is this interesting? How do we solve it?

Relevance for the SensorWeb context:

- Limited aperture \rightarrow limited Rayleigh resolution
- Limited observation time, low SNR
- Sensor locations known only approximately

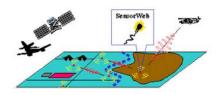
Proposed approach:

- View the problem as one of *imaging* a "source density" over the field of regard
 - Ill-posed inverse problem
 - Cast as an optimization problem and *regularize* by favoring fields with *concentrated densities*
 - Include optimization over sensor locations



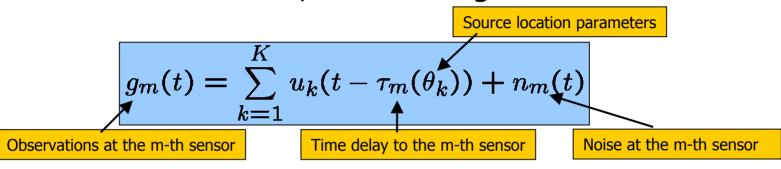
Vital Statistics

- IT-2 (Fusion of heterogeneous sensors in unstructured and uncertain environments)
- RCA-1 (Self-calibration)
- Ties to RCA-2&3 (Tradeoffs in local vs. global processing) and RCA-4 (Minimum resource requirements)
- Contributors
 - Malioutov, Çetin, Fisher, Willsky
- Preliminary outputs
 - Several publications and talks
 - A number of academic, industrial, and DoD interactions



Preliminaries

Consider M sensors, K source signals $u_k(t)$

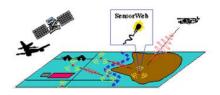


- Time delay structure depends on far vs. near-field
- In frequency domain (combining all sensors):

$$\mathbf{g}(\omega) = \mathbf{A}(\omega, \Theta)\mathbf{u}(\omega) + \mathbf{n}(\omega)$$

where $\mathbf{A}_{mk}(\omega, \Theta) = \exp(-j\omega\tau_m(\theta_k))$

• Note $A(\omega, \Theta)$ depends on actual source locations



Observation Model

Let {β₁,...,β_{Nβ}} be a sampling grid of all source locations
 Define a N_β × 1 vector s(ω)

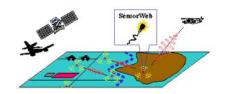
$$\mathbf{s}_{i}(\omega) = \begin{cases} u_{k}(\omega), & \text{if } \beta_{i} = \theta_{k} \\ 0, & \text{otherwise} \end{cases}$$

• Define the $M \times N_{\beta}$ steering matrix $\mathbf{A}(\omega)$ (linking all potential source locations to all sensors)

Resulting "overcomplete" observation model:

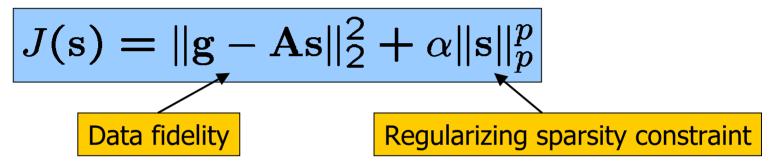
$$g(\omega) = A(\omega)s(\omega) + n(\omega)$$

- Formulate as a sparse signal reconstruction problem
- Determine source locations from peaks in reconstructed signal energy

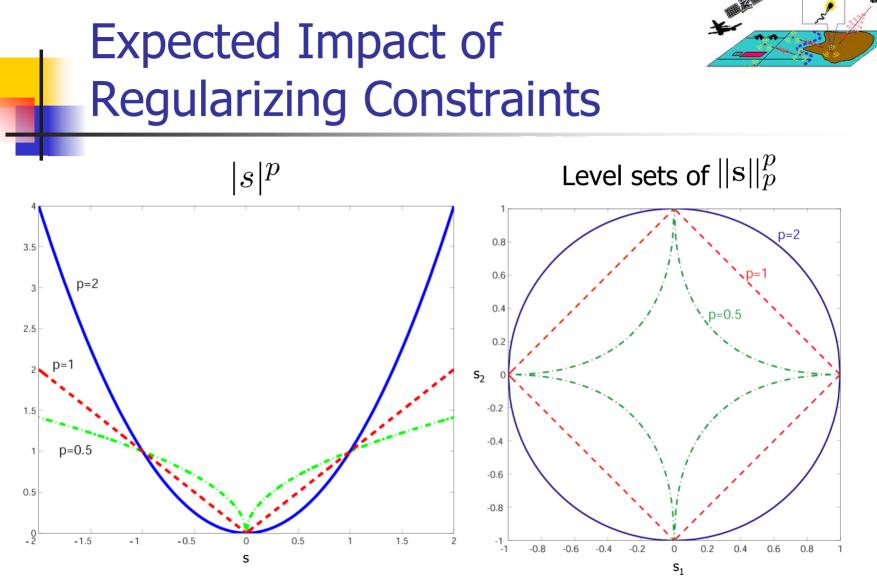


A Variational Framework for Source Localization

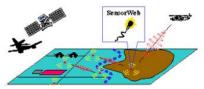
Minimize the cost function:



- Role of the regularizing constraint $(p \leq 1)$:
 - Preservation of strong features (source densities)
 - Preference of sparse source density field
 - Can resolve closely spaced radiating sources
 - Other non-quadratic functions can be used



Using a relatively small p in the minimization of the ℓ_p -norm of a vector results in the preference of a sparser vector structure



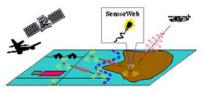
Solution of the Optimization Problem

Cost function (differentiable approximation):

$$J(\mathbf{s}) = \|\mathbf{g} - \mathbf{A}\mathbf{s}\|_2^2 + \alpha \sum_{i=1}^{N_\beta} (|\mathbf{s}_i|^2 + \epsilon)^{p/2}$$

Gradient of the cost function:

$$abla J(\mathbf{s}) = 2 \left(\mathbf{H}(\mathbf{s}) \ \mathbf{s} - \mathbf{A}^H \mathbf{g} \right)$$



Solution of the Optimization Problem

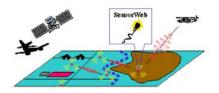
Iterative Scheme:

$$\mathbf{H}\left(\widehat{\mathbf{s}}^{(n)}\right)\,\widehat{\mathbf{s}}^{(n+1)} = \mathbf{A}^{H}\mathbf{g}$$

where n denotes the iteration number, and

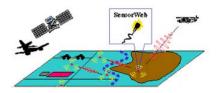
$$\mathbf{H}(\mathbf{s}) \triangleq \mathbf{A}^{H}\mathbf{A} + \alpha \mathbf{\Lambda}(\mathbf{s})$$
$$\mathbf{\Lambda}(\mathbf{s}) \triangleq \operatorname{diag} \left\{ \frac{p/2}{(|\mathbf{s}_{i}|^{2} + \epsilon)^{1-p/2}} \right\}$$

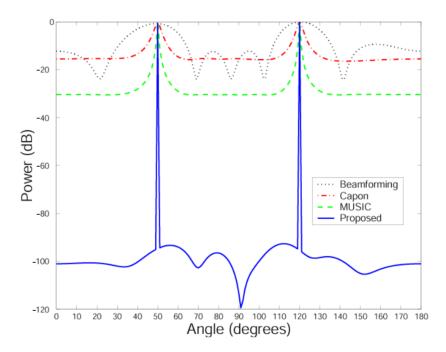
- Can be interpreted as a Quasi-Newton method with Hessian approximation $2\cdot H(\cdot)$ and unit step size
- Each step solves a quadratic optimization problem with intuitive, spatially adaptive weights



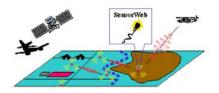
Overview of Experiments

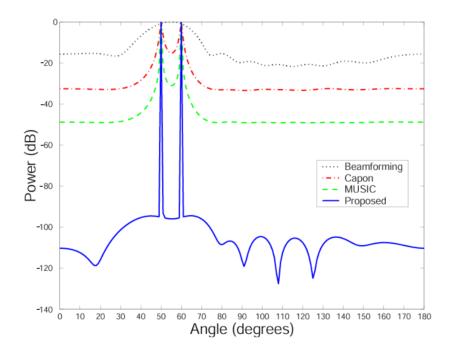
- Narrowband, far-field
 - Performance analysis based on multiple trials as a function of SNR and number of snapshots
- Narrowband, near-field
- Broadband, far-field
- Linear, circular, cross, rectangular arrays
- 200 time samples
- Use p = 0.1 in our objective function
- Choose $\alpha\,$ by subjective assessment



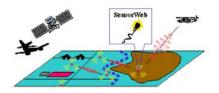


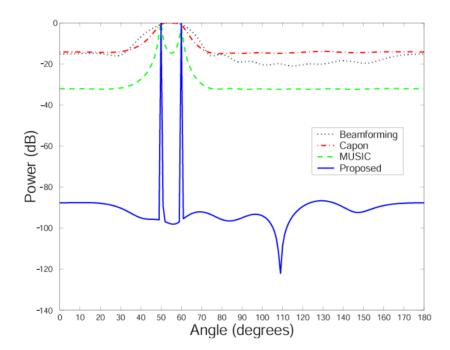
- Uniform linear array with 8 sensors
- Uncorrelated sources
- DOAs: 50°, 120°
- SNR = 10 dB



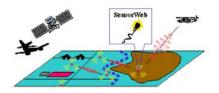


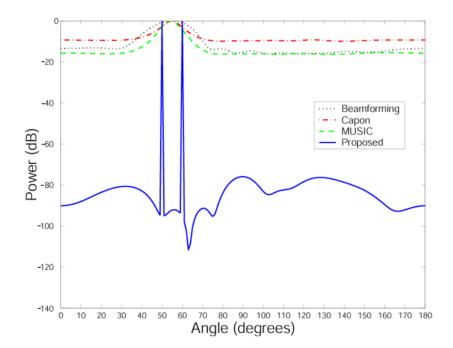
- Uniform linear array with 8 sensors
- Uncorrelated sources
- DOAs: 50°, 60°
- SNR = 20 dB



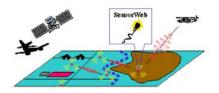


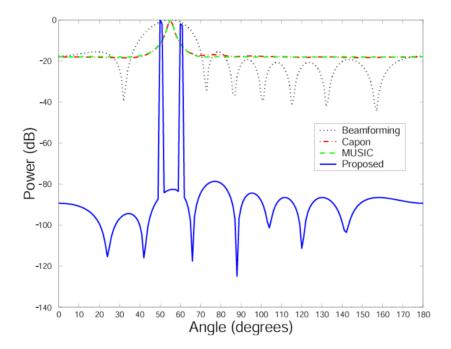
- Uniform linear array with 8 sensors
- Uncorrelated sources
- DOAs: 50°, 60°
- SNR = 10 dB



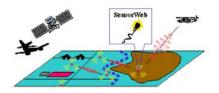


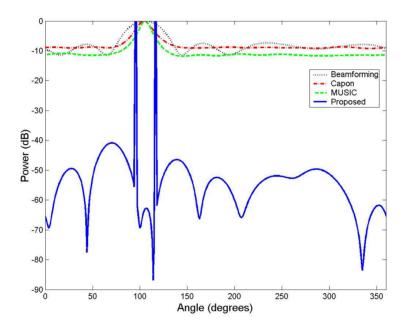
- Uniform linear array with 8 sensors
- Uncorrelated sources
- DOAs: 50°, 60°
- SNR = 5 dB



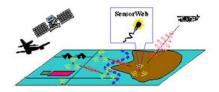


- Uniform linear array with 8 sensors
- Coherent sources (e.g. due to multipath)
- DOAs: 50°, 60°
- SNR = 20 dB

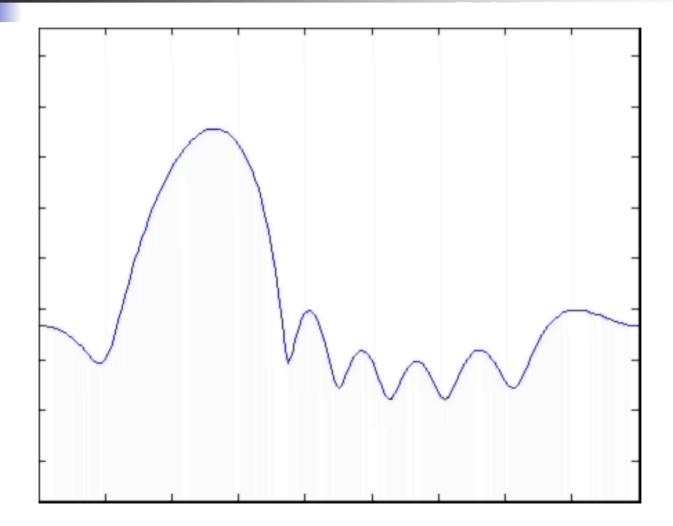


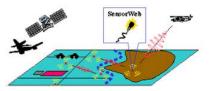


- Circular array with 10 sensors
- Uncorrelated sources
- DOAs: 90°, 120°
- SNR= 10 dB

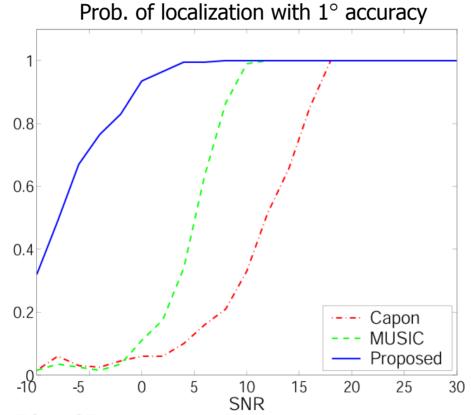


Iterative behavior



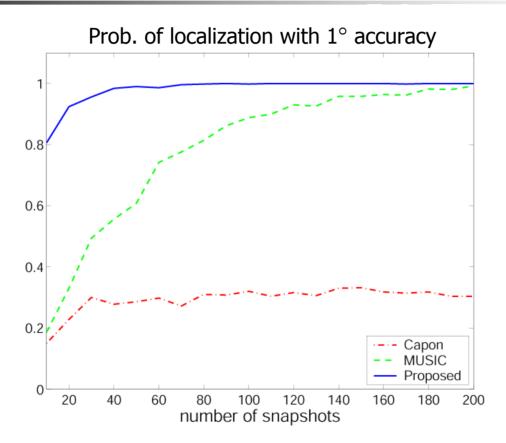


Prob. Correct Localization vs. SNR

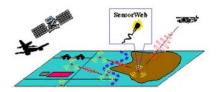


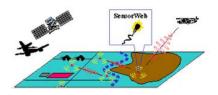
- DOAs: 50°, 65°
- Number of independent trials = 200
- Have similar results based on RMSE

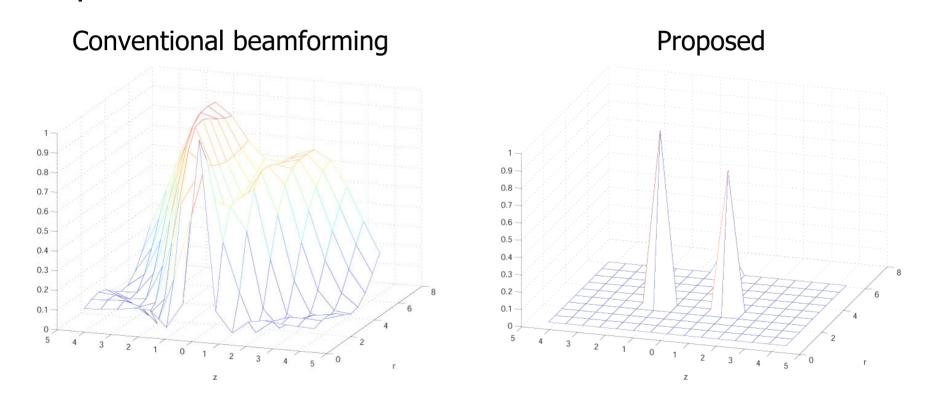
Prob. Correct Localization vs. # snapshots



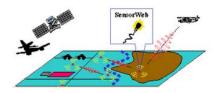
- DOAs: 50°, 65°. SNR = 10 dB.
- Number of independent trials = 200



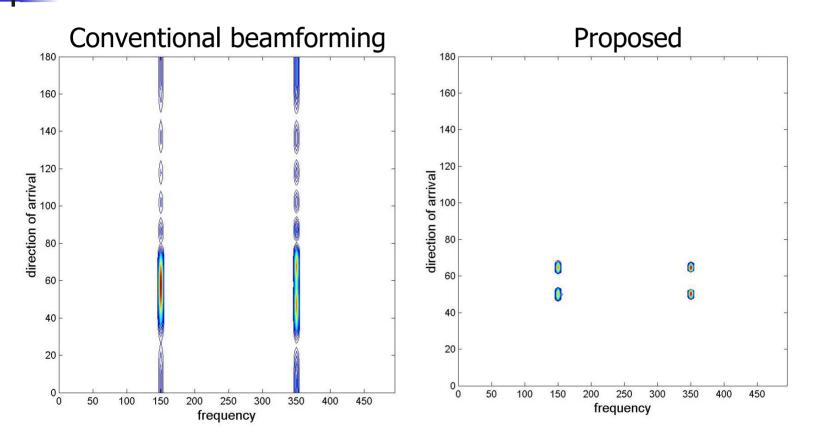




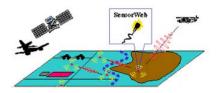
- Uniform linear array with 8 sensors
- Two uncorrelated sources



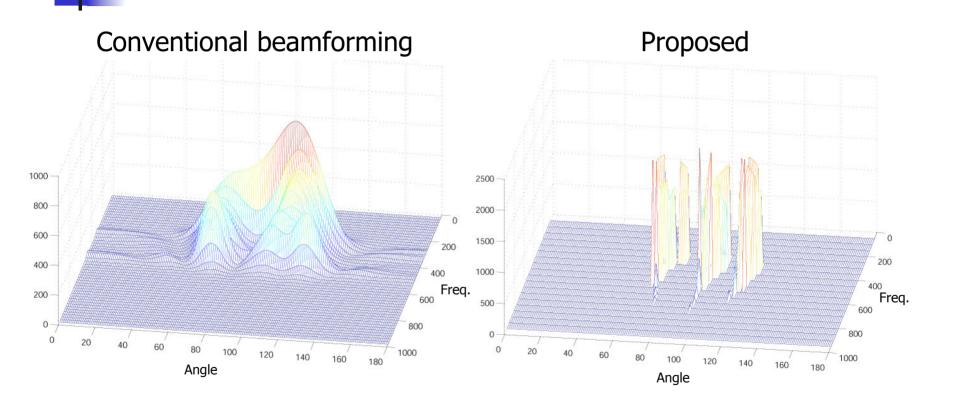
Multiple harmonics



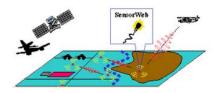
- Harmonics at 150 & 350 Hz, with DOAs: 50°, 65°
- SNR = 30 dB, uniform linear array with 8 sensors



Broadband



Three chirp signals



Extension to self-calibration

Preliminary approach

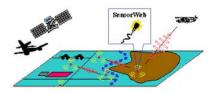
5

$$J(\mathbf{s},\mathbf{r}) = \|\mathbf{g} - \mathbf{A}(\mathbf{r})\mathbf{s}\|_2^2 + \alpha \|\mathbf{s}\|_p^p$$

Sensor locations

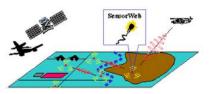
Use block coordinate descent for optimization

$$\widehat{\mathbf{s}}^{(n+1)} = \arg\min_{\mathbf{s}} J(\mathbf{s}, \widehat{\mathbf{r}}^{(n)})$$
$$\widehat{\mathbf{r}}^{(n+1)} = \arg\min_{\mathbf{r}} J(\widehat{\mathbf{s}}^{(n+1)}, \mathbf{r})$$

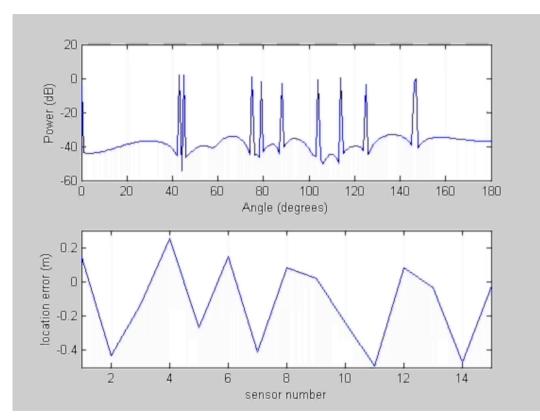


Self-calibration experiments

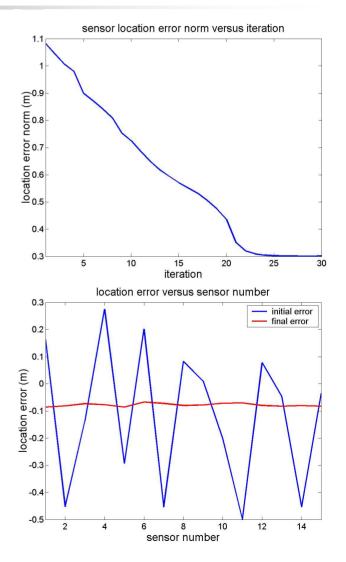
- Setup:
 - Far-field case
 - Narrowband signals
 - Linear array with 15 sensors
 - Two uncorrelated sources
 - DOAs: 45°, 75°
 - SNR = 30 dB
 - Sensor locations perturbed with a standard deviation of 1/3 of the nominal sensor spacing
 - 2-D array experiments underway

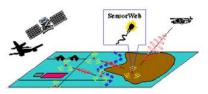


Self-calibration experiments – I

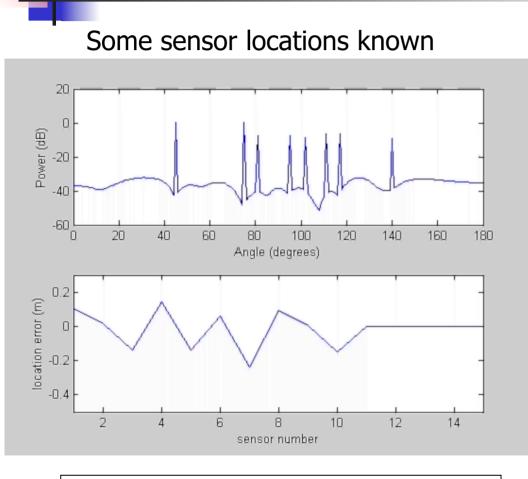


Moderate calibration errors can be compensated up to intrinsic ambiguities

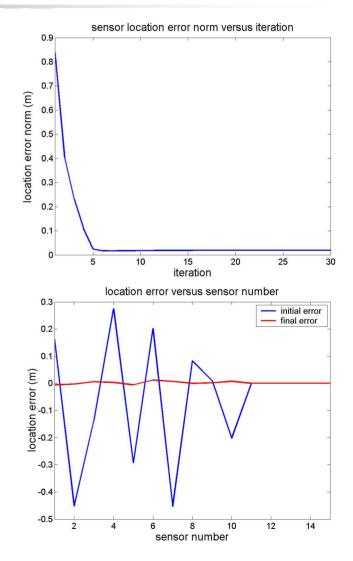


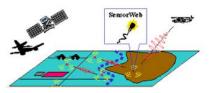


Self-calibration experiments – II

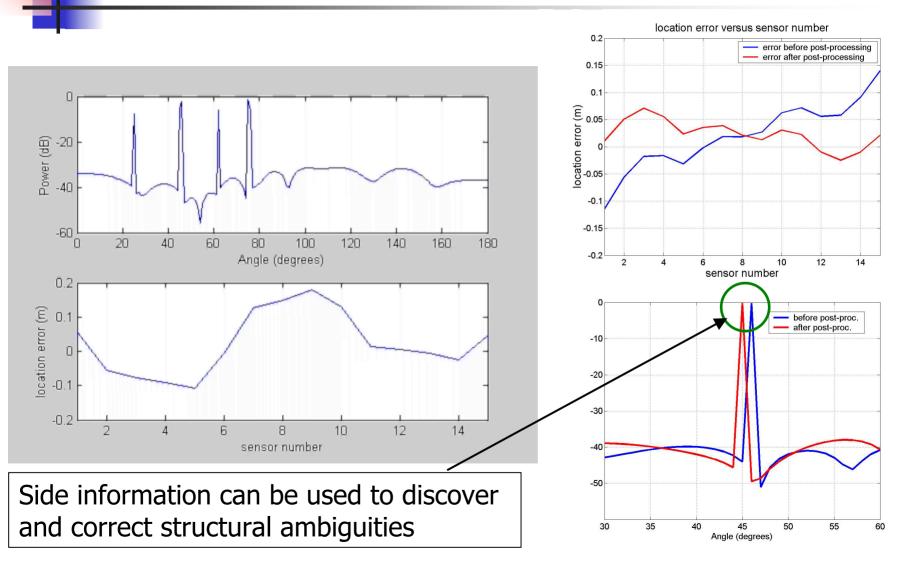


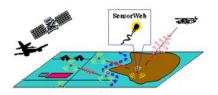
Additional information can be used to resolve the ambiguities





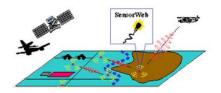
Self-calibration experiments – III





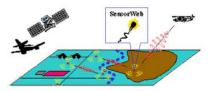
Summary

- Regularization-based framework for source localization with passive sensor arrays
 - Superior source localization performance
 - Superresolution
 - Reduced artifacts
 - Robustness to resource limitations
 - SNR
 - Observation time
 - Available aperture
 - Self-calibration capability
 - Can handle moderate uncertainties in sensor locations



Current and Future Work

- More on self-calibration
 - Gain/phase uncertainties in sensors
 - Ties to "autofocusing" methods in other domains
 - Identify limits on how much calibration error can be tolerated
 - Multiple arrays, complementary ties to Moses/Srour
 - Apply to the spatial coherence loss problem
- Experiments with measured data
- Issues to investigate
 - Choice of regularizing functionals and hyperparameters
 - Analysis of statistical performance, bounds
 - Tradeoffs between relatively local vs. global processing
- Extensions
 - Mobile/non-stationary environments
 - Heterogeneous sensors
 - Complex media
 Directional sensors



Plans for measured-data experiments

