

Network-constrained Estimation

Alan S. Willsky SensorWeb MURI Review Meeting June 14, 2002

A Notional Example

Multiple sensors with one or more bearing or location measurements

Possibly additional ng or nents signal features

Challenge: *Scalable algorithms* for data association and estimation under network constraints

The Estimation/Association Problem-I

- Objects : $\{1, ..., N\}$ Sensors : $\{1, ..., M\}$
- O_i = objects seen by ith sensor = { n_{i1}, \ldots, n_{im_i} } \subset {1,...,N}
- S_k = sensors seeing kth object = { r_{k1}, \ldots, r_{kn_k} } \subset {1,...,*M*}
- Desired quantities

 $-x_k$ = Object "state" (location, velocity, type,...) $-p(x_k)$ ="Prior" distribution

The Estimation/Association Problem-II

• Assignment and measurement permutations

- Sensor *i* measurements $\{1, \ldots, m_i\}$

- Permutation $\pi_i : \{n_{i1}, \dots, n_{im_i}\} \longrightarrow \{1, \dots, m_i\}$

 $\pi_i(n_{ij}) = \text{Sensor } i \text{ measurement index for object } n_{ij}$

- Assignment vector for Object $k : a_k = \{j_{k1}, \dots, j_{kn_k}\}$

 j_{ki} = Measurement index for Sensor r_{ki} observation of object k

• The data association constraint : $j_{ki} = \pi_{r_{ki}}(k)$

The Estimation/Association Problem-III

• Measured quantities

 $-\{y_{i1},\ldots,y_{im_i}\}$ – measurements from Sensor *i*

• If $\{a_k\}$ or equivalently $\{\pi_i\}$ are known

$$y_{i\pi_i(n_{ij})}$$
 measures Object $\pi_i(n_{ij})$
(e.g. $y_{i\pi_i(n_{ij})} = f(x_{\pi_i(n_{ij})}) + \text{noise}$

The Estimation Problem

- Given the assignments/permutations, compute the optimal estimates for each object as well as the *likelihoods* for each set of assignments to each individual object
 - A graphical model estimation problem
 - The likelihoods for each set of assignments to each object act as "scores" for optimal data association

The Association Problem

 Given the "scores", determine the optimal (or nearly optimal) set of assignments

This is a graphical model optimization problem

Fusion and Inference on Graphical Models

- $G = (\mathcal{V}, \mathcal{E}), \mathcal{V} = \text{nodes}, \mathcal{E} \subset \mathcal{V} \times \mathcal{V} = \text{edges}$
- C = set of cliques $C \subset \mathcal{V}$
- $x_s, s \in \mathcal{V}$ random variables / vectors at nodes of the graph, forming a Markov random field
- Given label "compatibility functions" $\psi_c(x_c)$

$$P(\{x_S \mid s \in \mathcal{V}\}) \propto \prod_{C \subset C} \psi_C(x_C)$$

• Objective

Estimation: Compute $P_s(x_s)$ Optimization: arg max $P(\{x_s \mid s \in \mathcal{V}\})$

Trees are Nice

• If the graph is acyclic, the distribution factorizes: For Estimation $P(x_1, x_2, x_3, x_4)$

$$P(\{x_s \mid s \in \mathcal{V}\}) = \prod_{s \in \mathcal{V}} P_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{I_{st}(x_s, x_t)}{P_s(x_s) P_t(x_t)}$$

For Optimization

$$P(\{x_s \mid s \in \mathcal{V}\}) \propto \prod_{s \in \mathcal{V}} \overline{P}_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{\overline{P}_{st}(x_s, x_t)}{\overline{P}_s(x_s) \overline{P}_t(x_t)}$$

$$\overline{P}_{s}(x_{s}) = \max_{\substack{x_{t} \mid t \neq s}} P(\{x_{s} \mid s \in \mathcal{V}\})$$

 Furthermore, these factorizations can be computed by sequences of local passing of messages

Exploiting acyclic structure

- Last time, introduced three classes of algorithms:
 - Embedded Tree Estimation Algorithms
 - Recursive Cavity Models (for linear and nonlinear estimation)
 - Tree Reparameterization Algorithms (for discrete, continuous, hybrid estimation and graphical optimization)

Embedded Trees

ET (continued)

- Previous results
 - Algorithms that (if they converge) yield not only optimal estimates but also correct error statistics
- Recent progress
 - Demonstration of excellent convergence properties
 - Using multiple trees
 - Using "preconditioner" concepts (tree computation followed by "local" relaxation steps
 - Sufficient conditions for convergence

Network of 600 sensor nodes

Estimate and covariance convergence results

Recursive Cavity Models

RCM (continued)

- Previous results
 - Last year we introduced the RCM concept
- Recent progress
 - Demonstration of efficiency and accuracy of RCM procedures with "boundary thinning"
 - Extension from linear models to general discrete and hybrid models
 - Theoretical framework for establishing stability and performance bounds from boundary thinning

Tree-Reparameterization Algorithms

- Previous results (for estimation only)
 - Introduction of the framework
 - Characterization of fixed points of iterations
 - Some convergence results
 - Initial work on characterizing errors in resulting estimates

The TRP Concept

• For *any* embedded acyclic structure:

For Estimation

$$P(\{x_s \mid s \in \mathcal{V}\}) = \prod_{s \in \mathcal{V}} T_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{T_{st}(x_s, x_t)}{T_s(x_s) T_t(x_t)} \times \text{Remainder}$$

For Optimization

$$P(\{x_s \mid s \in \mathcal{V}\}) \propto \prod_{s \in \mathcal{V}} \overline{T_s}(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{\overline{T_{st}}(x_s, x_t)}{\overline{T_s}(x_s) \overline{T_t}(x_t)} \times \text{Remainder}$$
$$\overline{T_s}(x_s) = \max_{\{x_t \mid t \neq s\}} T(\{x_s \mid s \in \mathcal{V}\})$$

TRP: Recent Progress, Part I

- Demonstration of superior performance in many cases (without optimizing choices of trees)
- Error characterization and bounds
 - The key is the TRP representation which allows error representation in terms of expectations over tree-distributions
 - Optimal Bounds: Weighting over all trees
 - There are *lots* of trees!
 - Convex analysis comes to the rescue

Sample TRP Estimation Results

TRP: Recent Progress, Part II

- TRP for optimization (rather than estimation)
 - Characterization of large classes of distributed algorithms: Rewriting global "cost" in terms of locally computable costs through message passing
 - Fixed point characterization
 - Clarifying when this works even in the acyclic case
 - Bounds
 - Use of "reweighting" concept to obtain algorithms that yield *optimal* solutions
 - Yields distributed optimal solution to the data association problem

Small Example

- 7 "sensors" (either all different sensors at same point in time or fewer sensors with measurements at multiple times)
- 21 targets
- Each "sensor" sees 5 targets
- Key issue: How organize hypotheses?
 - Target-centric? (best for centralized fusion)
 - Sensor-centric? (distributed)
 - Hybrid, driven by dynamic structure

Example structure

 Sensor-centric global hypothesis space is huge even for this problem

Hybrid Sensor-Target Representation

 Message passing algorithm yields distributed association solution very quickly and efficiently

Where to from here?

Exploitation of framework for target tracking

- Explicit (rather than implicit) representation of time, combining RCM and TRP
- Incorporation of false, missed alarms, new objects
- Extension of optimization results to include both *querying and stopping* (as in sequential tests)
- Expanding the tradeoff space
 - Effect of local memory
 - Effect of nonlocal (or multi-hop) communications