

Optimum Signaling Strategies in Low-Power Networks

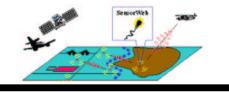
Sergio Verdú

Princeton University

June 14, 2002

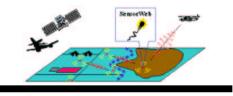
SensorWeb MURI Review Meeting

1



Overview

- Minimum Energy per Bit
- Power-Bandwidth Tradeoff
- Multiple Access Channels
- Broadcast Channels
- Relay Channels
- Impact of Delay Constraints



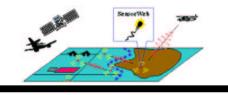
Minimum Energy per bit

SV: "On channel capacity per unit cost," *IEEE Trans.* Information Theory, vol. 36 (5), pp. 1019–1030, Sep. 1990.

$$\frac{E_b}{N_0} = \frac{\log_e 2}{\dot{C}(0)} \tag{1}$$

$$\dot{C}(0) = \sup_{x \in \mathcal{A}} \frac{D(P_{Y|X=x} || P_{Y|X=0})}{b[x]}$$
(2)

Achieved by **On-Off Keying**



Fading Channels

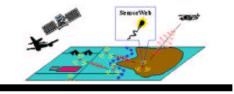
Theorem 1 (SV, 2002) Consider the m-dimensional complex channel

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} \tag{3}$$

where the complex Gaussian vector \mathbf{n} has independent identically distributed components. Then, the required received energy per bit for reliable communication satisfies

$$\frac{E_b^{\mathsf{r}}}{N_0}_{\min} = \log_e 2 = -1.59 \ dB,\tag{4}$$

regardless of whether \mathbf{H} is known at the transmitter and/or receiver.

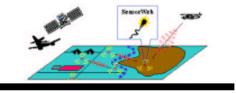


Traditional Optimality Criterion in low-power regime:

Input Signal is optimal in the low-power regime

 $\begin{array}{c} \Leftrightarrow \\ \text{it achieves } \underline{E_b} \\ \otimes \end{array} \\ \end{array}$

$$\lim_{\mathsf{SNR}\downarrow 0} \frac{I(\mathbf{x}_{\mathsf{SNR}}; \mathbf{y})}{\mathsf{SNR}} = \dot{C}(0).$$



BPSK asymp. Optimal for Quadrature Channel?

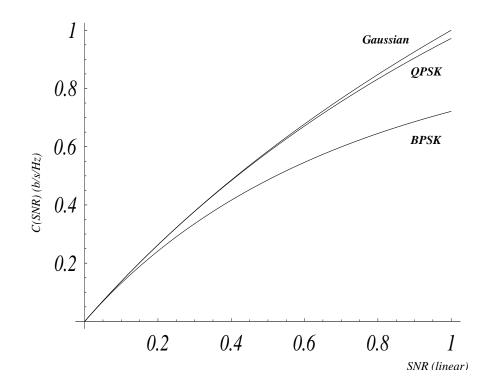
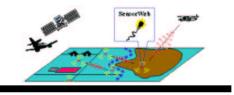


Figure 1: Capacity achieved by complex Gaussian inputs, QPSK and BPSK in the additive white Gaussian noise channel.



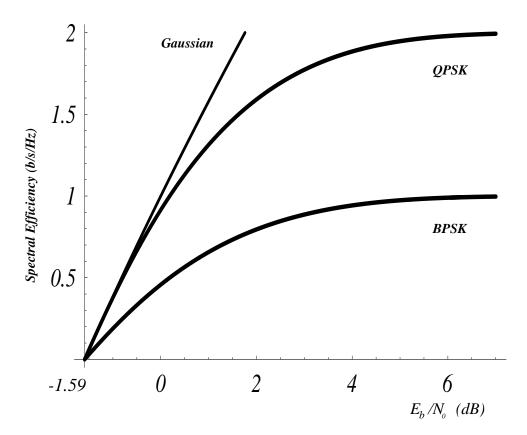
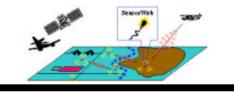
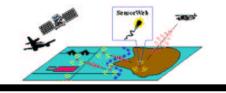


Figure 2: Spectral efficiencies achieved by complex Gaussian inputs, QPSK and BPSK in the additive white Gaussian noise channel.



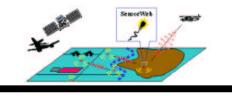
New Optimality Criterion in low-power regime (SV, 2002) ::

Achieve $\dot{C}(0)$ and $\ddot{C}(0)$ \Leftrightarrow Achieve $\frac{E_b}{N_0 \min}$ and the optimum slope (b/s/Hz/(3 dB)) of capacity $at \frac{E_b}{N_0 \min}$ Minimize required bandwidth for given power and rate in the low power regime.



Optimal Power-Bandwidth Strategies::

- Coherent communication: **QPSK** On-Off keying requires more than 6 times as much bandwidth
- Noncoherent communication: Flash Signaling



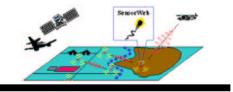
The Multiple Access Channel

$$Y = X_1 + X_2 + \ldots + X_K + N$$
 (5)

where N is Gaussian with independent real and imaginary components and $E[|N|^2] = \sigma^2$, $E[|X_i|^2] \leq P_i$.

The total capacity (maximum sum of rates) of the multiaccess channel is equal to the capacity of a single-user channel whose power is equal to the sum of the individual powers, namely

$$\log_2\left(1+\frac{\sum_{k=1}^K P_k}{\sigma^2}\right).$$



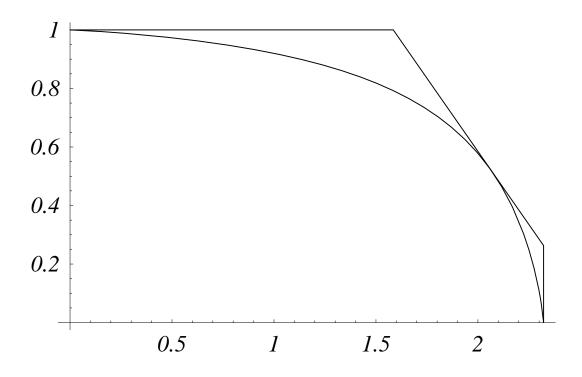
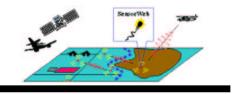


Figure 3: Multiaccess channel capacity region and TDMA achievable region with with $P_1/\sigma^2 = 4$ and $P_2/\sigma^2 = 1$.



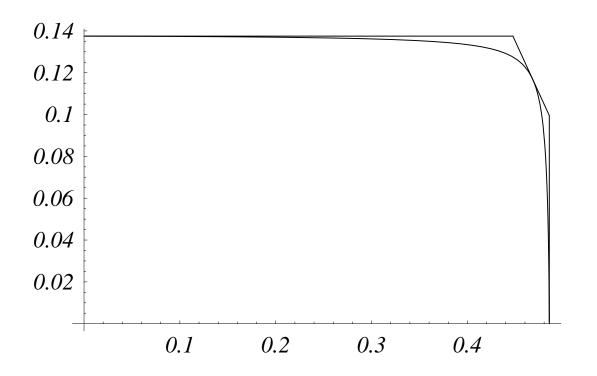
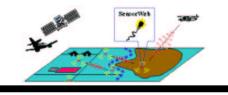


Figure 4: Multiaccess channel capacity region and TDMA achievable region with with $P_1/\sigma^2 = 0.4$ and $P_2/\sigma^2 = 0.1$.

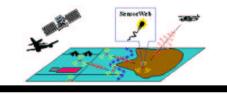


Multiaccess Channels: Optimality of TDMA

Theorem 2 For all R_1/R_2 , the minimum energies per information bit for the multiple-access channel are equal to

$$\frac{E_1}{N_0} = \frac{E_2}{N_0} = \log_e 2 = -1.59 dB.$$
(6)

Furthermore, (6) is achieved by TDMA.



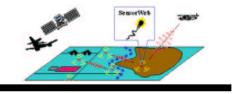
Multiaccess Channels: Suboptimality of TDMA

Theorem 3 For all R_1/R_2 , the multiaccess slope region achieved by TDMA is:

 $\{(\mathcal{S}_1, \mathcal{S}_2): 0 \leq \mathcal{S}_1, 0 \leq \mathcal{S}_2, \mathcal{S}_1 + \mathcal{S}_2 \leq 2\}.$

Theorem 4 The optimum multiaccess slope region (achieved by superposition) is:

 $\{(\mathcal{S}_1, \mathcal{S}_2): 0 \leq \mathcal{S}_1 \leq 2, 0 \leq \mathcal{S}_2 \leq 2\}.$



Broadcast Channels

$$Y_{1} = X + N_{1}$$

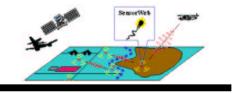
$$Y_{2} = X + N_{2}$$

$$\dots$$

$$Y_{K} = X + N_{K}$$

$$(7)$$

where $E[|X|^2] \leq P$, $E[|N_i|^2] \leq \sigma_i^2$. The capacity region of this channel (achieved by superposition and successive cancellation) was found in (Cover' 73)



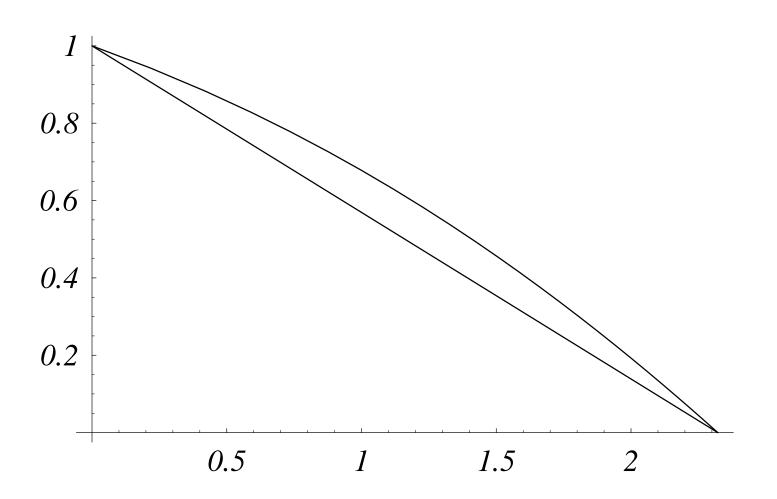
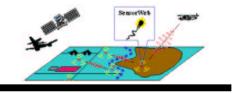


Figure 5: Capacity region and TDMA-achievable rate region of broadcast channel with $P/\sigma_1^2 = 4$ and $P/\sigma_2^2 = 1$.



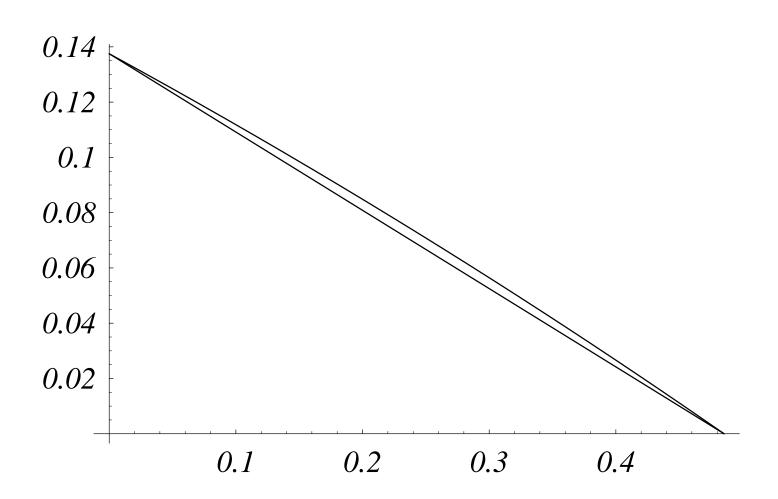
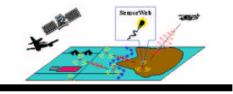


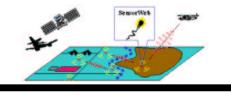
Figure 6: Capacity region and TDMA-achievable rate region of broadcast channel with $P/\sigma_1^2 = 0.4$ and $P/\sigma_2^2 = 0.1$.



Broadcast: Optimality of TDMA

Theorem 5 Suppose that $R_1/R_2 = \theta$. Then, the minimum energies per bit achieved by both TDMA and superposition are:

$$\frac{E_1}{N_0} = \left(1 + \frac{\sigma_2^2}{\sigma_1^2 \theta}\right) \log_e 2 \tag{8}$$
$$\frac{E_2}{N_0} = \left(1 + \frac{\theta \sigma_1^2}{\sigma_2^2}\right) \log_e 2 \tag{9}$$



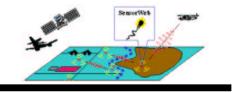
Broadcast: Suboptimality of TDMA

Theorem 6 (SV, 2002) Let the rates vanish while keeping $R_1/R_2 = \theta$. The broadcast slope region achieved by TDMA is:

$$\{(\mathcal{S}_1, \mathcal{S}_2): \ 0 \le \mathcal{S}_1 \le \frac{2\theta}{1+\theta}, \ 0 \le \mathcal{S}_2 \le \frac{2}{1+\theta}\}.$$
 (10)

Theorem 7 (SV, 2002) Let the rates vanish while keeping $R_1/R_2 = \theta$. The optimum broadcast slope region (achieved by superposition) is:

$$\{ (S_1, S_2) : 0 \leq S_1 \leq \frac{2\theta \left(\theta + \sigma_2^2 / \sigma_1^2\right)}{\theta^2 + 2\theta + \sigma_2^2 / \sigma_1^2}, \\ 0 \leq S_2 \leq \frac{2 \left(\theta + \sigma_2^2 / \sigma_1^2\right)}{\theta^2 + 2\theta + \sigma_2^2 / \sigma_1^2} \}.$$
 (11)



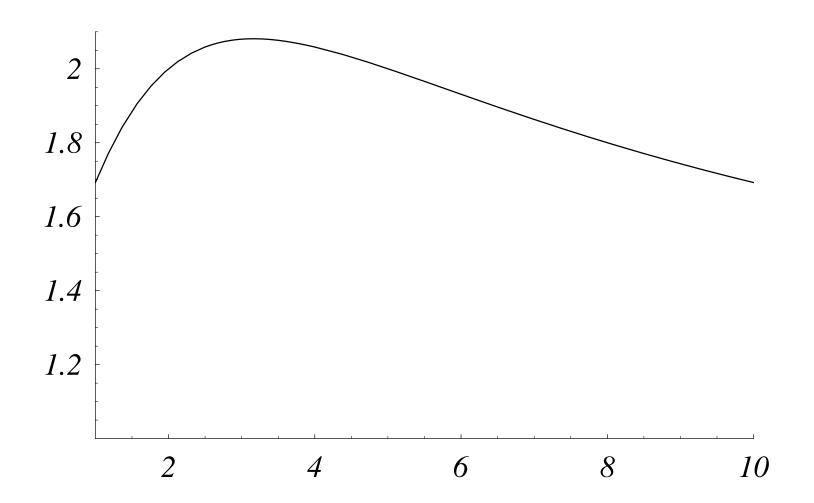
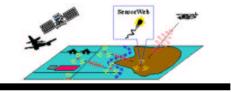
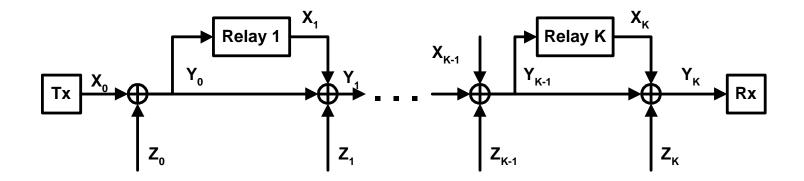
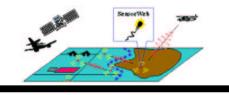


Figure 7: Broadcast Channel: Bandwidth factor penalty incurred by TDMA as a function of $R_1/R_2 = \theta$ for $\sigma_2^2 = 10\sigma_1^2$



Multirelay Channel





Theorem 8 (Cover and El Gamal, 79) Single Relay:

• The capacity of this channel is given by

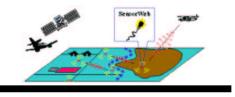
$$\mathcal{C}_{1} = \max_{0 \le \alpha \le 1} \min\left\{ C\left(\frac{1 + \beta_{1} + 2\sqrt{(1 - \alpha)\beta_{1}}}{1 + \nu_{1}}\frac{P_{0}}{N_{0}}\right), C\left(\alpha\frac{P_{0}}{N_{0}}\right) \right\}$$
(12)

where $C(x) = \log(1+x) P_0 = power at the transmitter, P_1 = power at the relay; <math>\beta_1 = P_1/P_0$ and $\nu_1 = \frac{N_1}{N_0}$.

let α₁^{*} denote the value of α which achieves the optimum in (12). Then

$$C_1 = C\left(\alpha_1^* \frac{P_0}{N_0}\right) = C\left(\alpha_1^* \frac{P_0(1+\nu_1)}{N_0+N_1}\right)$$
(13)

where $\alpha_1^* = 1 \Leftrightarrow \beta_1 \ge \nu_1$



Theorem 9 (Reznik, SK, SV, 2002) Multirelay capacity

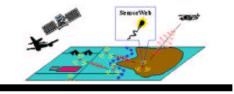
$$\mathbf{C}_{K-relay} = \max_{\{\alpha_{i,j}\}} \mathcal{C}_K \tag{14}$$

$$\mathcal{C}_K = \min_{0 \le k \le K} \mathcal{R}_k \tag{15}$$

$$\mathcal{R}_{k} = \sup C \left(P_{0} \frac{\sum_{j=0}^{k} \left(\sum_{i=0}^{j} \sqrt{\alpha_{i,j}} \right)^{2}}{\sum_{j=0}^{k} N_{j}} \right)$$
(16)

the supremum is over the set of $\{\alpha_{i,j}\}$ defined for $0 \le i \le j \le K$ satisfying the constraints

$$\sum_{j=0}^{K} \alpha_{0,j} = 1 \qquad \qquad \sum_{j=i}^{K} \alpha_{i,j} = \beta_i = \frac{P_i}{P_0} \quad \forall 1 \le i \le K$$



Optimum Power Allocation

Maximize capacity by optimizing P_0, P_1, \dots, P_K subject to $P_0 + \dots + P_K = P_T$.

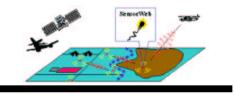
$$\alpha_{i,k} = \alpha_k = \frac{1}{(k+1)^2} \nu_k \left(\sum_{j=0}^{k-1} (j+1)^2 \alpha_j \right) \quad \forall 0 \le i \le k$$
(17)

where

$$\nu_k = \frac{N_k}{\sum_{j=0}^{k-1} N_j}$$
(18)

Optimal power allocation is then given by:

$$\beta_k = \frac{\sum_{k=j}^K \alpha_j}{\sum_{j=0}^K \alpha_j} \tag{19}$$



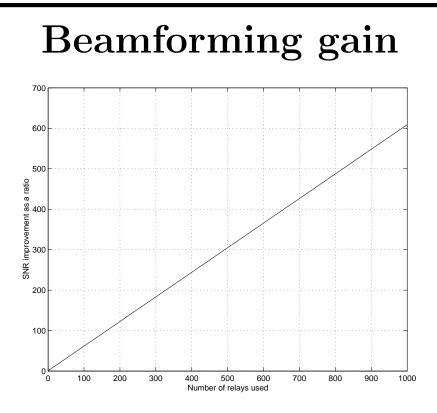
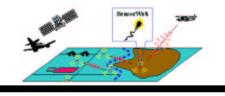


Figure 8: effective SNR (linear) / SNR pooling all powers noncoherently

Slope is (asymptotically) = $\frac{6}{\pi^2}K$, instead of K (with genie-aided relays that have noiseless access to message). Penalty = -2.16 dB.



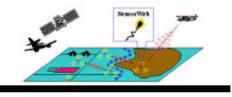
Delay Constraints and Causal Feedback

(Caire, Tuninetti, SV, 2001)

- K transmitters must deliver their message within N slots $(N \not\rightarrow \infty)$ to the receiver by spending a fixed maximum energy.
- The number of complex dimensions per slot is $L = \lfloor WT \rfloor$, where T is the slot duration and W is the channel bandwidth.
- The baseband complex received L-vector in slot n is

$$\boldsymbol{y}_n = \sum_{k=1}^{K} c_{k,n} \boldsymbol{x}_{k,n} + \boldsymbol{z}_n \tag{20}$$

where \boldsymbol{z}_n is a proper complex Gaussian random vector with i.i.d. components of zero mean and unit variance, $c_{k,n}$ is the complex fading coefficient for user k with instantaneous power $\alpha_{k,n} \stackrel{\Delta}{=} |c_{k,n}|^2$



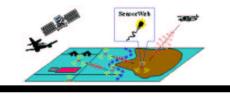
- The receiver has perfect Channel State Information (CSI)
- The transmitters have perfect *causal* feedback of CSI. (Major benefits of feedback in low power regime)
- Each transmitter k is subject to the per-codeword input constraint (referred to as *short-term* power constraint),

$$\frac{1}{L}\sum_{n=1}^{N} |\boldsymbol{x}_{k,n}|^2 \le N\gamma_k \tag{21}$$

where $N\gamma_k$ is the transmitted energy per *L*-symbols. γ_k has the meaning of average *transmit* Signal-to-Noise Ratio (SNR).

• The *instantaneous* transmit SNR of user k in slot n is

$$\beta_{k,n} \stackrel{\Delta}{=} \frac{1}{L} |\boldsymbol{x}_{k,n}|^2 \tag{22}$$



Theorem 10 The k-th user single-user long-term average capacity per unit energy $s_N^{(k)}$ is given by the Dynamic Programming recursion

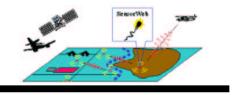
$$s_n^{(k)} = \mathbf{E}[\max\{s_{n-1}^{(k)}, \alpha_k\}]$$
(23)

for n = 1, ..., N with initial condition $s_0^{(k)} = 0$ and where expectation is with respect to $\alpha_k \sim F_{\alpha}^{(k)}(x)$. Furthermore, $s_N^{(k)}$ is achieved by the "one-shot" power allocation policy defined by

$$\beta_{k,n}^{\star} = \begin{cases} N\gamma_k & \text{if } n = n_k^{\star} \\ 0 & \text{otherwise} \end{cases}$$
(24)

where the random variable n_k^{\star} , function of $(\alpha_{k,1}, \cdots, \alpha_{k,N})$, is defined as

$$n_{k}^{\star} = \min\left\{n \in \{1, \dots, N\} : \alpha_{k,n} \ge s_{N-n}^{(k)}\right\}$$
(25)



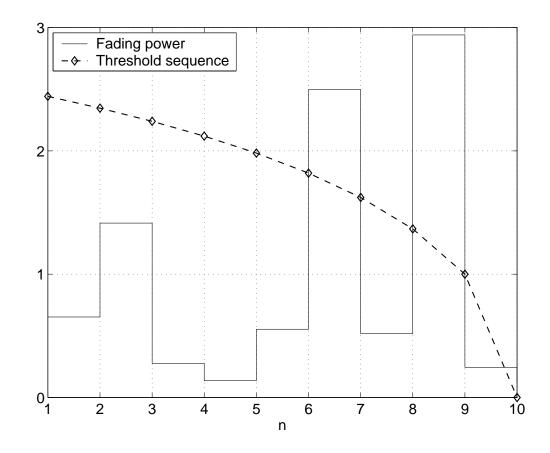
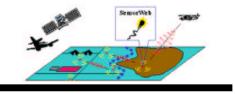


Figure 9: Rayleigh fading realization over a frame of N = 10 slots and the corresponding thresholds for the "one-shot" policy. Threshold function depends on Fading distribution.



Suboptimality of TDMA

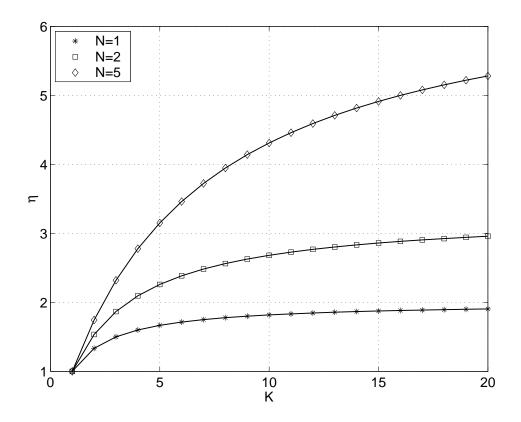
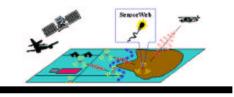
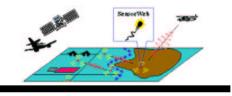


Figure 10: Bandwidth expansion factor of TDMA over superposition coding vs. the number of users K for the Rayleigh fading case.



- A population of sensors that have to transmit a measurement within a given delay by spending a fixed energy to a central collector terminal. (e.g. sensors for Earth observation deployed on a vast geographical area, and a low-Earth orbit satellite that illuminates them with its spotbeam antenna for a limited amount of time (say NT seconds) every orbit period.)
- Sensors have a battery that can be recharged during the orbit period, and use multiple resolution source coding in order to encode their measurement data with different rate-distortion tradeoffs.
- When the satellite is over the sensors, it broadcasts a probe signal in order to allow the sensors to measure their own channel



- The sensors spend the whole battery energy in a one-shot transmission at the instantaneous rate allowed by their fading state, according to the optimal power policy described here.
- TDMA (e.g. Bluetooth) is highly suboptimal in terms of bandwidth. Superposition (with receiver signal processing) is much more bandwidth efficient.