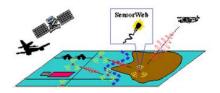


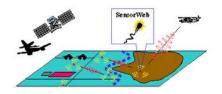
Distributed Algorithms for Estimation Tasks in Sensor Networks

Maurice Chu and Sanjoy Mitter SensorWeb MURI Review Meeting June 14, 2002



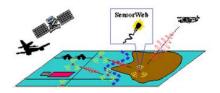
SensorWeb and Beyond

- Data Organization, Information and Estimation [IT-2]
- The Role of Communication
- The Gluing Together of Systems
 - The Central Role of the Cohomology Group
- Dynamic Gluing



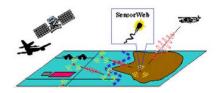
Distributed Algorithms Outline

- Estimation in Sensor Networks (RCA-5&6)
- Information-Driven Sensor Querying (IDSQ) Algorithm
- Problem Formulation
- Distributed Algorithm
- Discussion and Future Work



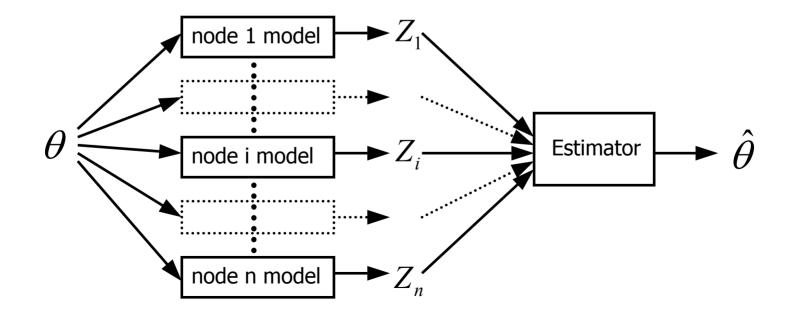
Nature of Information in Sensor Networks

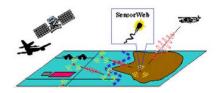
- Measurement Types
 - Acoustic amplitude, direction of arrival
 - Seismic
 - Magnetic
 - Visual
- Characteristics
 - Local sensors capable of measuring quantities in a local region
 - Distributed measurements from several sensors must be incorporated for a decent estimate
 - Redundant all sensor measurements unnecessary



Estimation Task in Sensor Network

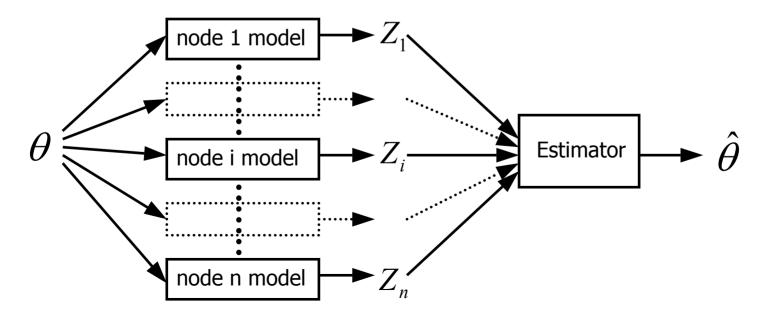
- Usual Parameter Estimation
 - Given model of parameters to measurements, estimate the parameter when given measurements.

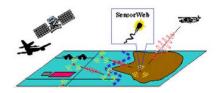




Estimation Task in Sensor Network

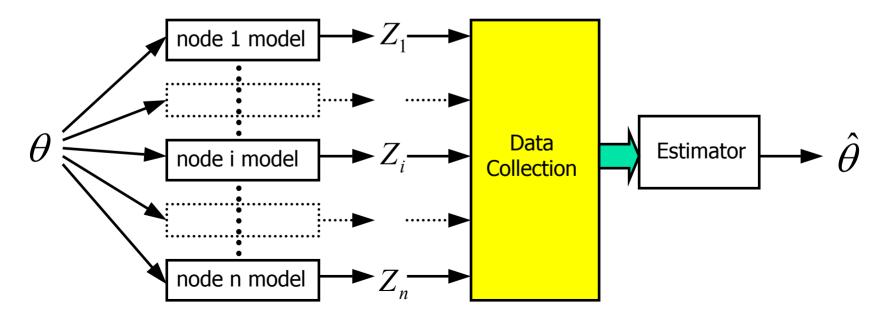
- Unique aspect in Sensor Network
 - Measurements to estimate parameters are distributed throughout different sensor nodes.
 - Cost of communicating measurements to a single node for processing is significant due to power constraints.

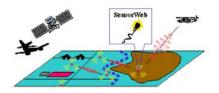




Estimation Task in Sensor Network

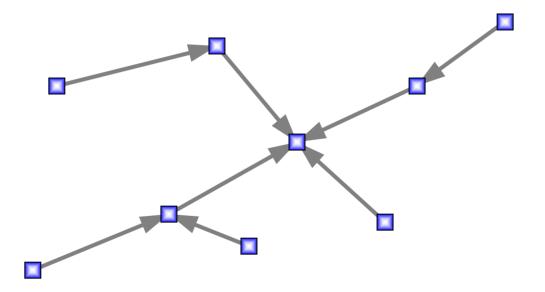
- Unique aspect in Sensor Network
 - Measurements to estimate parameters are distributed throughout different sensor nodes.
 - Cost of communicating measurements to a single node for processing is significant due to power constraints.



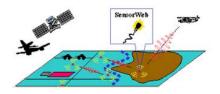


Static Data Collection

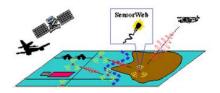
- Communication cost proportional to distance.
- Minimal spanning tree.



Communication cost is the same regardless of what parameter generated data.

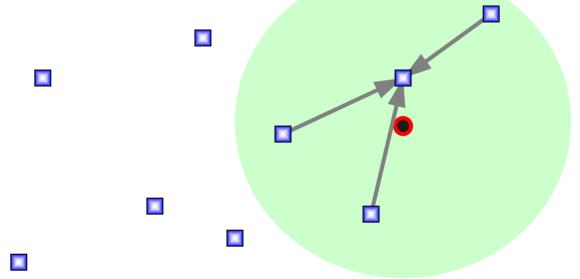


Dynamic Data Collection Due to locality of sensor measurements, knowledge of the parameter generating the data implies only a subset of the sensors' measurements need to be collected.

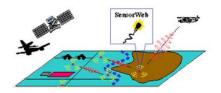


Dynamic Data Collection

 Due to locality of sensor measurements, knowledge of the parameter generating the data implies only a subset of the sensors' measurements need to be collected.



- We do not know what parameter generated data until data is collected.
- However, knowing a few of the sensor measurements tells us what subset of parameters could have generated data.



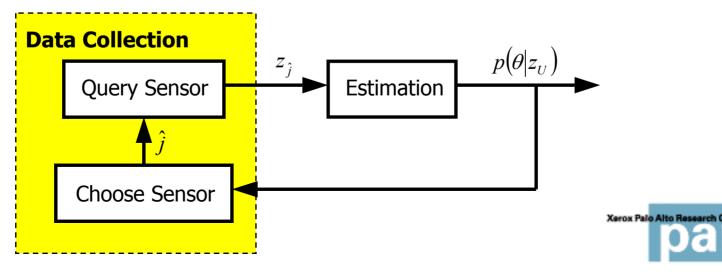
Communication Protocols

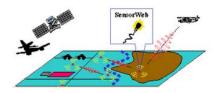
- Point-to-Point
 - "pull" type node queries for a remote node's data
 - Auxiliary communications required
 - Based on local information of querying node
 - "push" type node sends information to remote node
 - No auxiliary communications
 - Based on local information of sending node
- Broadcast-to-a-Region
 - More appropriate for wireless communication
 - Less refined than point-to-point (no receiver specified)

 Idea: Choose next measurement to incorporate into posterior distribution based on maximal information content.

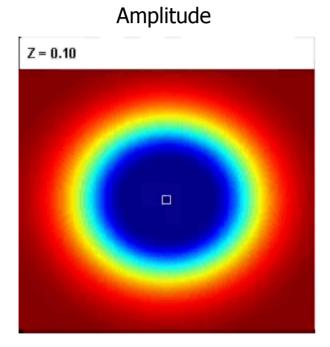
$$\hat{j} = \underset{j \in \{1, \dots, n\} - U}{\operatorname{arg\,max}} E_{z_j} \left[I\left(p\left(\theta \middle| z_U \cup \{z_j\} \right) \right) \right]$$

 $U\,$ - set of sensor node measurements already incorporated



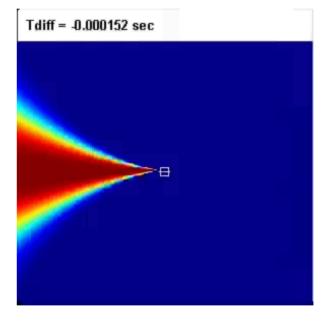


Measurement Models

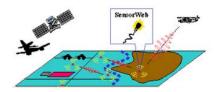


$$Z_{i} = \frac{A}{\left\|\theta - x_{i}\right\|^{\alpha}} + N_{i}$$

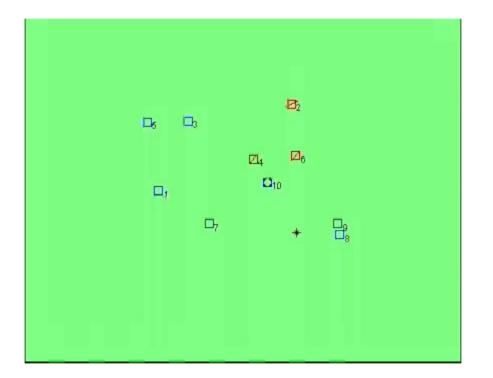
Time Difference of Arrival (TDOA)



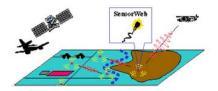
 $\Delta T_{i} = T_{i,1} - T_{i,2}$ $T_{i,j} = \frac{\|\theta - x_{i,j}\|}{c} (1 + N_{i,j})$



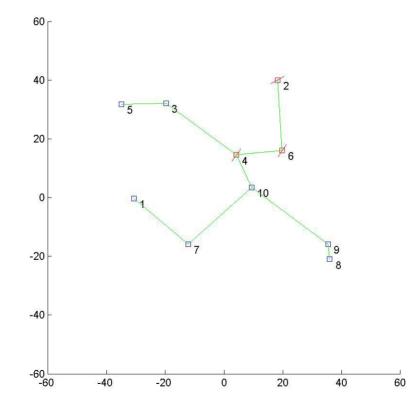
IDSQ for Stationary Target Localization



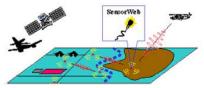
Communications blue – query request green – measurement value Sensor Type Blue square – amplitude Red square – TDOA dipole Target asterisk – target location green area – posterior distribution



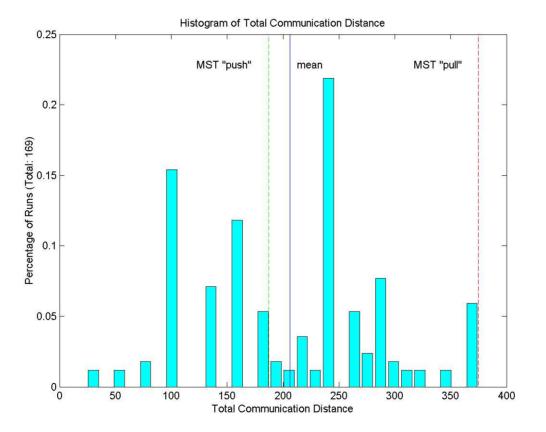
Minimal Spanning Tree

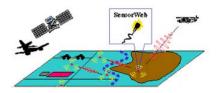


Total communication distance = 187.37 ft

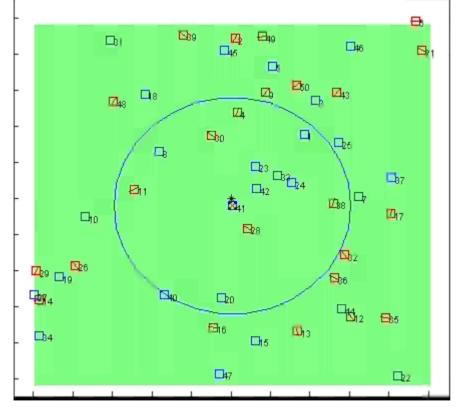


Comparison IDSQ vs. Minimal Spanning Tree





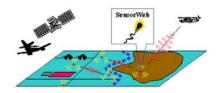
IDSQ for Target Tracking



Questions

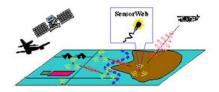
- Choosing leader node.
- Allowing concurrent communications.

50 sensors, randomly placed in 100x100 ft square

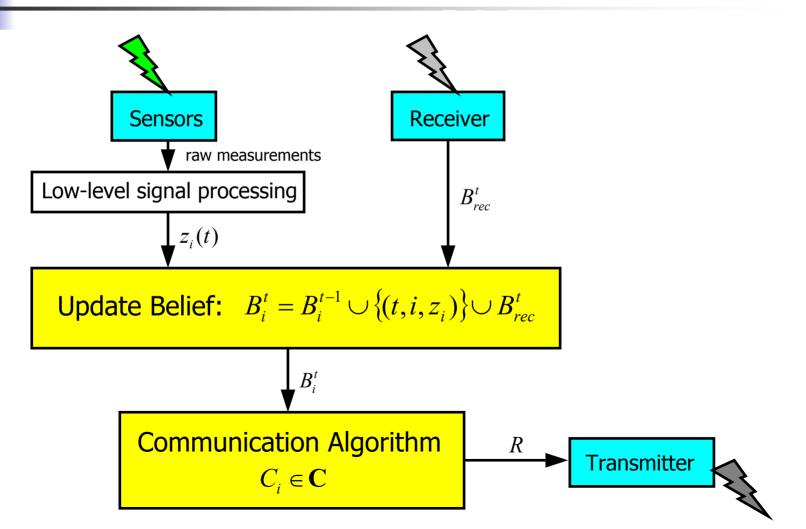


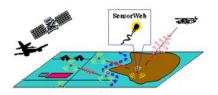
Data Collection Problem Formulation

- Sensor Node Architecture
- Definitions
 - Belief
 - Communication rule
 - Communication algorithm
 - Communication history
- Problem Statement
- Construction



Sensor node architecture

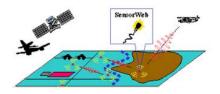




 $\{(t, i, Z_i)\}$

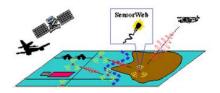
Belief

- A belief is a collection of triples
 - Time $t \in [0,\infty)$
 - Sensor ID $i \in \{1, \dots, n\}$
 - Measurement Value^{$Z_i \in Z_i$}
- Set of Beliefs: **B**
- Posterior distribution is calculated from data in a belief.
- Practical representation of belief need not be a collection of data.
 - Approximate by family of parameterized distributions.
 - Approximate by samples from distribution like particle filters.



Communication Rule and Algorithm

- A communication rule is a pair (B,R)
 - Precondition: belief $B \in \mathbf{B}$
 - Action: send belief to subset of sensors $R \subset \{1, ..., n\}$
- A communication algorithm is a function $C: \mathbf{B} \to 2^{\{1,...,n\}}$
 - Collection of communication rules
 - Action: Evaluate communication rule for the current belief. If non-empty, transmit belief to appropriate sensor nodes.
- Set of communication algorithms: C



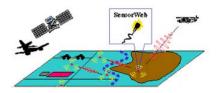
Communication History

 A communication history is a record of communications that have occurred from a set of communication algorithms.

$$\begin{pmatrix} H_t \end{pmatrix}_{t \in [0,\infty)}$$
$$H_t \subset \{1,\ldots,n\} \times \{1,\ldots,n\}$$

- depends on
 - time series of measurements
 - communication algorithms

 $\{ z_i(t) \}_{i=1,t \in [0,T]}^n \\ \{ C_j \}_{j=1}^n$



Problem Statement

• Choose a set of communication algorithms $\{C_j\}_{j=1}^n$

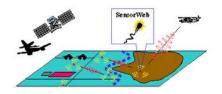
such that

 (information constraint) some sensor node has in its belief enough data to compute an estimate and

$$p\left(\theta \mid [B_i^{\infty}]_t\right) \approx p\left(\theta \mid z_1(t), \dots, z_n(t)\right)$$

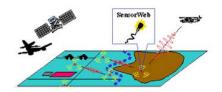
 (communication optimization) the average communication cost is minimized.

$$\mathbf{E}_{Z_1^n} \left[\mathbf{cost}((H_t)_{t \in [0,\infty)}) \right]$$

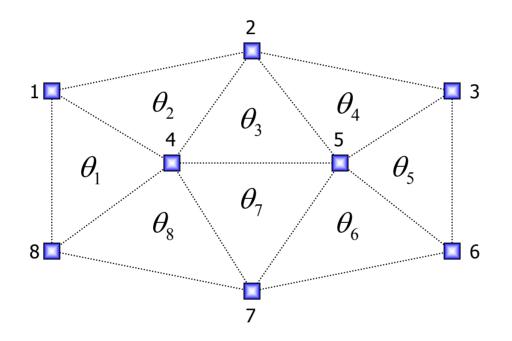


Construction of Distributed Communication Algorithms

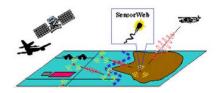
- Bipartite graph representation for capturing information constraints
- Construct a hierarchy from bipartite graph
- Convert hierarchy to communication algorithms



Simple Sensor Network Example

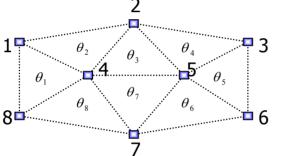


- Sensor nodes measure two values {0,1}.
- Estimation task is to determine whether high valued sensors are in triangular formations.



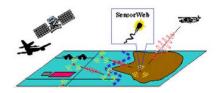
Bipartite Graph Representation

Information constraints



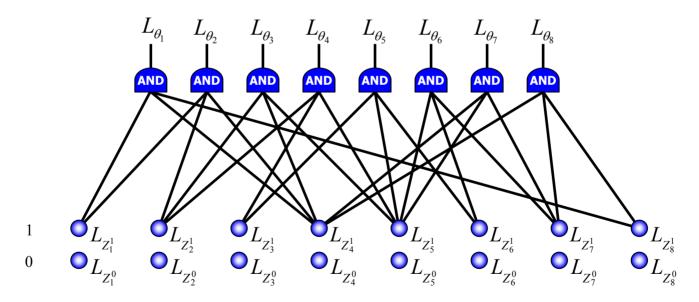
- $\theta_1: Z_1 = 1, Z_4 = 1, Z_8 = 1$ $\theta_5: Z_3 = 1, Z_5 = 1, Z_6 = 1$ $\theta_2: Z_1 = 1, Z_2 = 1, Z_4 = 1$ $\theta_6: Z_5 = 1, Z_6 = 1, Z_7 = 1$ $\theta_3: Z_2 = 1, Z_4 = 1, Z_5 = 1$ $\theta_7: Z_4 = 1, Z_5 = 1, Z_7 = 1$ $\theta_4: Z_2 = 1, Z_3 = 1, Z_5 = 1$ $\theta_8: Z_4 = 1, Z_7 = 1, Z_8 = 1$

- **Bipartite graph**
- $\theta_3 \quad \theta_4 \quad \theta_5$ θ_{6} θ_8 θ_1 θ_7 θ_{γ} 1 0 \bigcirc Z_1 Z_3 Z_{A} Z_5 Z_6 Z_7 Z_8 Z_2

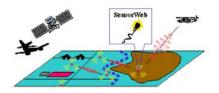


Interpretation as Feedforward Network

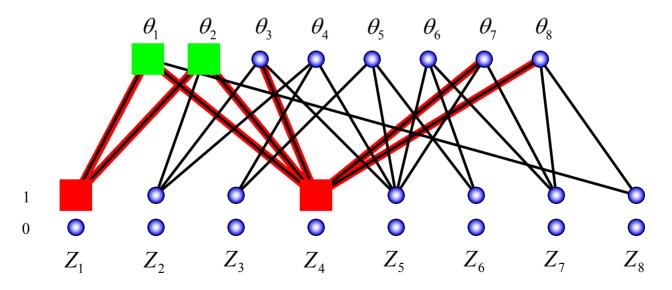
- Associate a boolean variable with each vertex of bipartite graph.
- Higher level representations considered to be logical functions of boolean variables from lower level representations.



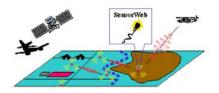
- Idea is to represent complex functions by compositions of simple primitive functions.
- Primitive functions should be associated with the primitive operations of original problem.



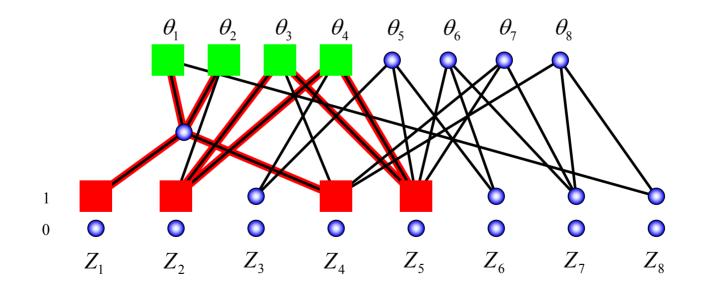
- Primitive operation for communication algorithms is sending a belief to another node.
- Primitive function for hierarchy is a two-input logical AND.

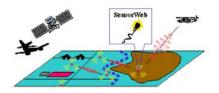


 Add intermediate nodes until all nodes are associated with primitive functions.

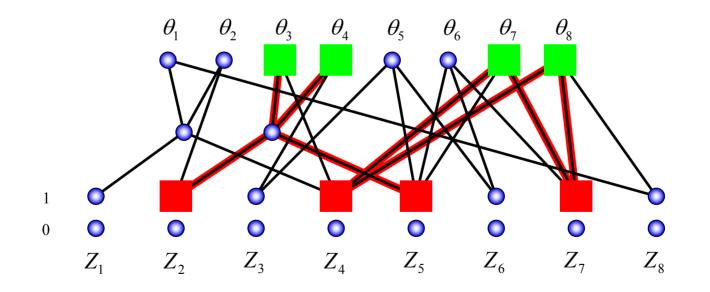


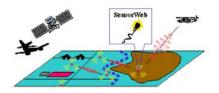
- Primitive operation for communication algorithms is sending a belief to another node.
- Primitive function for hierarchy is a two-input logical AND.



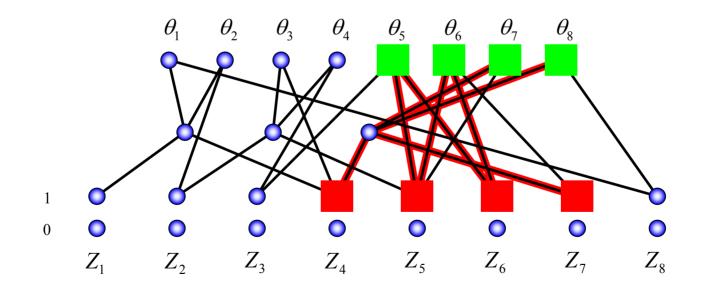


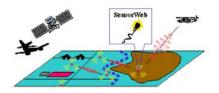
- Primitive operation for communication algorithms is sending a belief to another node.
- Primitive function for hierarchy is a two-input logical AND.



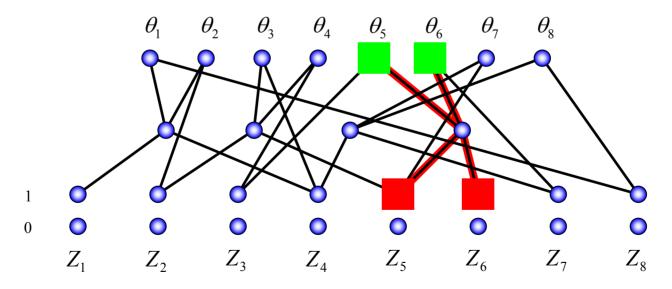


- Primitive operation for communication algorithms is sending a belief to another node.
- Primitive function for hierarchy is a two-input logical AND.

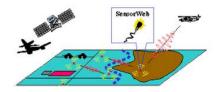




- Primitive operation for communication algorithms is sending a belief to another node.
- Primitive function for hierarchy is a two-input logical AND.

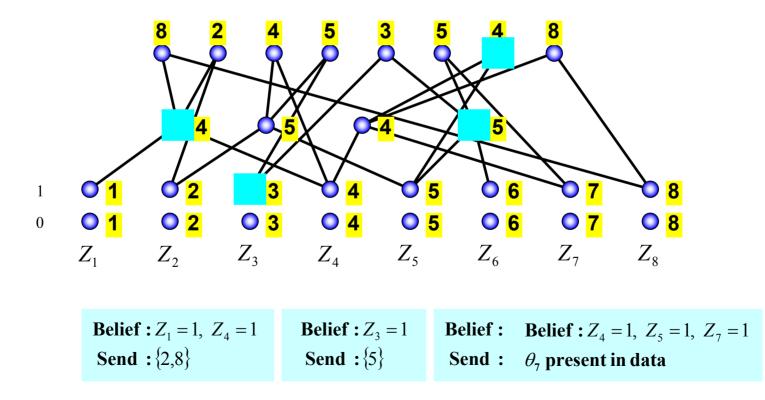


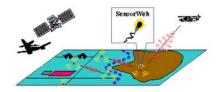
 Resulting hierarchy where every node is associated with a two-input logical AND.



Hierarchy to Communication Algorithm

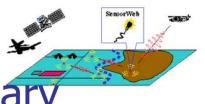
- Assign hierarchy nodes to sensor nodes.
- Read off communication rules.



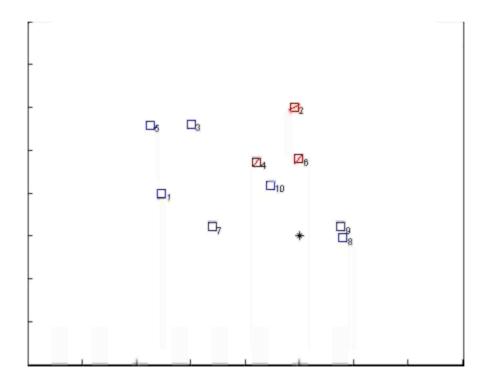


Resulting Communication Algorithms

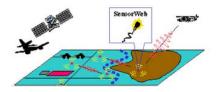
Sensor Node	Rule Number	Rule Belief	Send
1	1	Z_1 = 1	4
2	1	Z_2 = 1	5
3	1	Z_3 = 1	5
4	1	Z_1 = 1, Z_4 = 1	2, 8
	2	Z_4 = 1, Z_7 = 1	8
5	1	Z_5 = 1	4
	2	Z_2 = 1, Z_5 = 1	4
	3	Z_5 = 1, Z_6 = 1	3
6	1	Z_6 = 1	5
7	1	Z_7 = 1	4, 5
8	0	no rules	



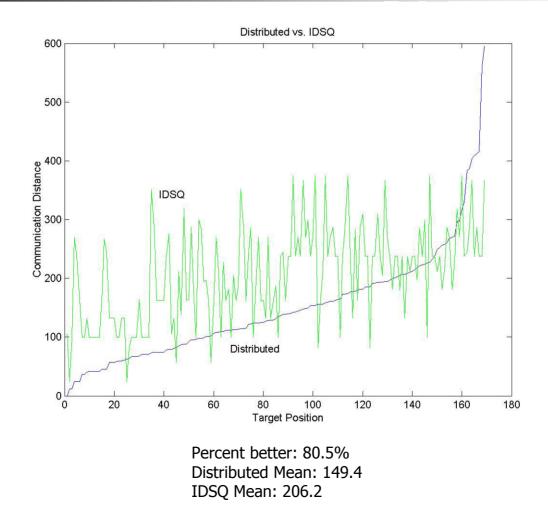
Distributed Algorithm for Stationary Target Localization

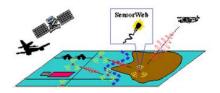


- Concurrent communications can occur for faster data collection.
- Only a single node carries the global belief after all communication have settled.



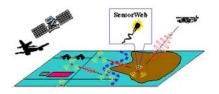
Comparison Distributed Algorithm vs. IDSQ





Discussion and Future Work

- Two modes of data collection
 - Distributed algorithm
 - Estimate quality poor
 - Generous data collection
 - IDSQ
 - Estimate quality good
 - Parsimonious data collection
- Tracking
 - Use distributed algorithm to initialize tracker and determine leader.
 - Use modified IDSQ to perform tracking.

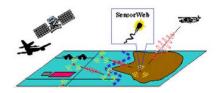


Conceptual Problem

- How are open nonlinear dynamical systems composed of an interconnected assembly of subsystems?
- How are automata composed of an interconnected assembly of (sub-)automata?

What we have done

Our problem is vastly more difficult than Krohn-Rhodes



Gluing Systems

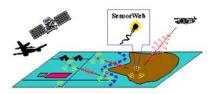
 $Gluing = \begin{cases} creating a new system by making \\ identification on a totality of systems \end{cases}$

gluing behaviors
of subsystemsCONSTRAINSthe behavior of
the overall system

Local Behavior

Local Behavior = "switching off" every other subsystem except the one under focus

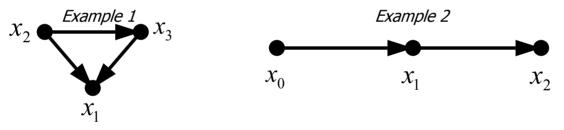
```
\begin{cases} LOCAL BEHAVIORS \\ + \\ INTERCONNECTION DATA \end{cases} \rightarrow OUR COHOMOLOGY GROUPS
```



Examples

Our cohomology theory: nontrivial, discriminates between systems
Example 1 (underlying graph is exactly a cycle)

 $\dot{x}_1(t) = x_2(t) \cdot u_1(t), \dot{x}_2(t) = x_3(t) \cdot u_2(t), \dot{x}_3(t) = x_1(t) \cdot u_3(t), y =$



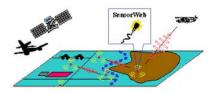
 H^{\pm} = invariant differential operators on a real line

Recall: representation theory of invariant differential operators —> origin of harmonic analysis. The latter underlies most of LTI systems in signal processing & control

 $H^{1}=0$

 Example 2 (Underlying graph a linear tree - gluing of ends absent)

$$\dot{x}_0 = 0, \dot{x}_1 = x_0 \cdot u_1(t), \dot{x}_2 = x_1 \cdot u_2(t), y = x_2$$



Codes from Languages

From automata, we produce a sequence of error-correcting codes.
 Suitable projections of the inclusions
 {degree-r cocycles in the cohomology}

Why Build Codes in This Way?

- Cohomological nature of codes —> a conceptual platform to analyze the distance of codes
- Yields almost a dictionary: languages —> codes.
 Languages studied extensively