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The Problem

! A network of “nodes”
! Some representing sensors, some the “hidden” 

variables to be estimated
! Links between nodes represent:

! Statistical relationships among variables (e.g., between 
measurements and hidden variables or between those 
variables themselves)

! Communication links between sensors

! Objective:  Perform optimal or provably near 
optimal estimation of all variables given all data, 
subject to network constraints



A Notional Example



Linear Estimation on Graphs

1ˆ−P



Graph Structure and Inverse Covariances

.



Trees Are Nice
! If the graph is acyclic (e.g., a tree), then there 

exist very efficient algorithms for optimal 
estimation
! Belief propagation (BP)
! Two-sweep algorithms analogous to Rauch-Tung 

Striebel smoothing (tree-based Gaussian elimination)
! Key is the existence of what has been called “partially 

nested information structures” in decentralized control
! If the graph has cycles, optimal estimation is not 

so easy
! “Fill” in Gaussian elimination
! Iterative algorithms such as BP don’t always converge, 

and when they do, they give the correct estimates but 
not the correct covariances



Embedded Trees



ET:  Calculation of the estimates



ET:  Calculation of the covariances



ET: Convergence



Result: Inference on 20x20 Grid

(b) Convergence of covariances



Complexity Comparisons



ET’s not quite ready to phone home

! Compact (and computable) sufficient or 
necessary & sufficient conditions for convergence

! New algorithmic structures using ET as a 
preconditioner for CG

! Faster results in some cases when ET diverges
! Asynchronous versions using only local network 

structure
! Optimal or at least good choices of spanning 

trees
! Randomized choices of spanning trees



Tree-Based Reparameterization (TRP)

! Motivated by success of ET, with focus 
here on discrete-valued processes

! The key idea is that distributions over 
trees admit very special factorizations in 
terms of marginal distributions at 
individual nodes and over maximal cliques 
(assumed here to be doubletons)

! The idea uses the generalization of 
factorizations for Markov chains



Estimation for a Markov process on a graph G
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Tree estimation as reparameterization



TRP:  The Basic Idea



Graphical Illustration



TRP and BP

! Interpretation of BP as a TRP algorithm, using 
two-node, non-spanning trees
! Yields alternate algorithmic structure which cuts 

storage requirement in half

! Empirical results confirm intuition that more 
global communication structure of TRP yields 
gains
! Lower total computational/communication cost
! Converges in some cases in which BP does not and 

converges at least as fast or faster than BP when BP 
does converge



Empirical Results



Convergence Plots



Theoretical Analysis of TRP

! Interpretation of TRP as successive 
projection operation using a “distance” 
related to Kullback-Liebler Divergence
! Demonstrates ties to analysis of BP and 

minimization of Bethe free energy
! Key is using an overcomplete parameterization 

of an exponential family of distributions
! Leads to a characterization of fixed points



Interpretation of Fixed Points



Fixed Points and Convergence

! Fixed points exist!
! Fixed points of TRP and BP are the same
! Sufficient condition for application of TRP with 

two spanning trees 
! Gives elementary proof that in the Linear-

Gaussian case, BP (when it converges) yields the 
correct estimates but incorrect error variances

! Interesting question: Can the exact marginals 
form a fixed point?
! Answer:  There are some cases where it can, but (we 

believe) these form a very special (and thin) set



Error Analysis

! Conceptually useful exact representation 
of error

! Leads to upper and lower bounds on error 
in probabilities produced by TRP (or BP) 
when they converge



Illustration of Bounds
A B



Where to from here?

! Enhanced bounds and analysis of behavior?
! Sensitivity analysis to understand “breaking points” of 

the algorithm
! Characterizating when TRP yields exact answers

! Choice of trees
! For algorithm and for bounds

! Asynchronous, distributed implementation
! Parallel operation à la BP
! Without global knowledge of network structure 
! Robust to changes in network structure

! New and better algorithms!



Recursive Cavity Models (RCM’s)

! The concept of a separator set, S
! Partitions the nodes of a graph into disjoint sets, A and 

B, such that any path from one set to the other passes 
through S 

! Conditioned on the values on S, the values on A and B
are independent

! This suggests the idea of a recursive partitioning 
of the graph, with the “state” of the process 
corresponding to the values of the process along 
a separating boundary
! Closely related to the idea of “frontier models” for 

dynamic Bayes’ nets
! The challenge is dealing with “fill” for boundary states



Frontier Models and RCM’s 

! Closely related to “marching methods” for 
PDE’s
! Boundary Models are propagated from frontier 

to frontier
! These correspond (in the linear case) to so-

called information representations 
(propagation of P-1 and P-1x)

! Approximations made to keep P-1 sparse, 
based on locally available statistical quantities

! Computation of estimates then involves 
separate calculations on each boundary

^



Notional Picture of a Frontier Model



Illustration of the Upsweep of RCM



The RCM Downsweep



Computation of Estimates

! Corresponds to solving sparse/graphical 
equations around each boundary

! These could also be solved, if desired, using 
graphical techniques (e.g., ET)

! RCM can be embedded in an iterative 
algorithm much as ET can, leading to very 
efficient iterative algorithms, in essence 
using RCM as a preconditioner



Where to from here?

! Global measures of approximation error 
and stability results
! Ensuring that approximations made at one 

boundary do not cause divergence more 
globally

! Putting something into the cavities
! Latent variables 

! Improving boundary models
! Capturing more global, long-distance 

characteristics/correlations (à la multipole 
methods for PDE’s)



Illustration of RCM with Latent Nodes


