Data Association/Fusion for Heterogenous Sensors in Nonlinear and Dispersive Media

John Fisher

SensorWeb MURI Review Meeting June 14, 2002

Goals

- Data association across nonlinear and/or dispersive channels
- Statistical models of heterogeneous sensors

Data Association and Fusion

Fusion and Data Association

Issues and Challenges

In the absence of a prior statistical model and given nonlinear and/or dispersive media

- How do we
- solve data association problem in a principled manner?
- fuse/utilize multi-modal data?
- Can we
- propagate the results to higher level algorithms in the form of likelihoods or scores?

Vital Statistics

- IT-2 (fusion of heterogeneous sensors in unstructured and uncertain environments)
- RCA-1 (self-calibration)
- RCA-5 (fusion algorithms)
- RCA-7 (data for experiments and demos)
- Ties to RCA-2\&3 (Tradeoffs in local vs. global processing)
- Contributors
- Fisher, Ihler, Çetin, Willsky
- Preliminary outputs
- Several publications and talks
- A number of academic, industrial, and DoD interactions

Data Association

Data Association Problem

- Sensors receive data and associated bearing estimates
- Bearing alone results in an inherent ambiguity
- Correspondence problem between A1,2 and B1,2

Data Association as a Hypothesis Testing Problem

Typically, one incorporates factorization and and an assumed parameterized density under either hypothesis

$$
\begin{aligned}
& H_{1}:\left[A_{1}, A_{2}, B_{1}, B_{2}\right]_{i} \square p_{H_{1}}\left(A_{1}, A_{2}, B_{1}, B_{2}\right)=p_{H_{1}}\left(A_{1}, B_{1}\right) p_{H_{1}}\left(A_{2}, B_{2}\right) \\
& H_{2}:\left[A_{1}, A_{2}, B_{1}, B_{2}\right]_{i} \square p_{H_{2}}\left(A_{1}, A_{2}, B_{1}, B_{2}\right)=p_{H_{2}}\left(A_{1}, B_{2}\right) p_{H_{2}}\left(A_{2}, B_{1}\right)
\end{aligned}
$$

resulting in a log-likelihood of

$$
\begin{aligned}
\log L & =\sum_{i} \log \left(\frac{p_{H_{1}}\left(\left[A_{1}, B_{1}\right]_{i}\right) p_{H_{1}}\left(\left[A_{2}, B_{2}\right]_{i}\right)}{p_{H_{2}}\left(\left[A_{1}, B_{2}\right]_{i}\right) p_{H_{2}}\left(\left[A_{2}, B_{1}\right]_{i}\right)}\right) \\
& =\sum_{i} \log \left(\frac{p_{H_{1}}\left(\left[A_{1}, B_{1}\right]_{i}\right) p_{H_{1}}\left(\left[A_{2}, B_{2}\right]_{i}\right)}{p\left(A_{1 i}\right) p\left(A_{2_{i}}\right) p\left(B_{1 i}\right) p\left(B_{2 i}\right)} \frac{p\left(A_{1 i}\right) p\left(A_{2 i}\right) p\left(B_{1 i}\right) p\left(B_{2 i}\right)}{p_{H_{2}}\left(\left[A_{1}, B_{2}\right]_{i}\right) p_{H_{2}}\left(\left[A_{2}, B_{1}\right]_{i}\right)}\right)
\end{aligned}
$$

Data Association as a Hypothesis Testing Problem

Expectation (or limit) under H_{1} yields

$E_{H_{1}}\{\log L\} \propto$	\propto	Terms related to association (i.e. statistical dependency)	
	$D\left(p_{H_{1}}\left(A_{1}\right) p_{H_{1}}\left(B_{2}\right) \\| p_{H_{2}}\left(\left[A_{1}, B_{2}\right]\right)\right)+$		
	$D\left(p_{H_{1}}\left(A_{2}\right) p_{H_{1}}\left(B_{1}\right) \\| p_{H_{2}}\left(\left[A_{2}, B_{1}\right]\right)\right)$		

under H_{2} yields
$E_{H_{2}}\{\log L\}$ o $\left.-I\left(A_{1} ; B_{2}\right)-I\left(A_{2} ; B_{1}\right)\right]$

Terms related to density modeling assumptions

What if prior models are not available?

- Suppose we have "perfect" density estimates from the measurements.
- We can estimate the factorization under H_{1} and H_{2} from data, but the terms due to the assumed density go away.
- Data association becomes a hypothesis test over factorizations

$$
\begin{aligned}
& E_{H_{1}}\{\log L\} \propto I\left(A_{1}, B_{1}\right)+I\left(A_{2}, B_{2}\right) \\
& E_{H_{2}}\{\log L\} \propto-\left(I\left(A_{1}, B_{2}\right)+I\left(A_{2}, B_{1}\right)\right)
\end{aligned}
$$

- So we lose the benefit of parametric density terms, but ...
- We also don't suffer when the density model terms are wrong.

Density Estimation Effects

- Of course, we have imperfect density estimates introducing additional biases in our log-likelihood computation.

$$
\begin{array}{|l}
E_{H_{1}}\{\log L\} \propto I\left(A_{1}, B_{1}\right)+I\left(A_{2}, B_{2}\right)- \\
\\
\\
\\
\\
\\
E_{H_{2}}\left\{\left(p\left(A_{1}, B_{1}\right) p\left(A_{2}, B_{2}\right) \| \hat{p}\left(A_{1}, B_{1}\right) \hat{p}\left(A_{1}\right) p\left(A_{2}\right) p\left(B_{1}\right)\right) p\left(B_{2}\right) \| \hat{p}\left(A_{1}, B_{2}\right) \hat{p}\left(A_{2}, B_{1}\right)\right) \\
\\
\\
\\
\\
\\
D\left(p\left(A_{1}, B_{2}\right) p\left(A_{2}, B_{1}\right) \| \hat{p}\left(A_{1}, B_{2}\right) \hat{p}\left(A_{2}, B_{1}\right)\right)+ \\
\end{array}
$$

Distribution over log-likelihoods

Dimensionality - Feature Extraction

- High dimensionality precludes direct density estimation.
- Dependence may be captured in a low-dimensional subspace (or manifold).
- Compromise by projecting to a lower dimensional space.

$$
\begin{aligned}
& H_{1}:\left[A_{1}, A_{2}, B_{1}, B_{2}\right] \rightarrow\left[f\left(A_{1} ; \alpha_{11}\right), f\left(A_{2} ; \alpha_{21}\right), f\left(B_{1} ; \beta_{11}\right), f\left(B_{2} ; \beta_{21}\right)\right] \\
& H_{2}:\left[A_{1}, A_{2}, B_{1}, B_{2}\right] \rightarrow\left[g\left(A_{1} ; \alpha_{12}\right), g\left(A_{2} ; \alpha_{22}\right), g\left(B_{1} ; \beta_{12}\right), g\left(B_{2} ; \beta_{22}\right)\right]
\end{aligned}
$$

- Use kernel density estimator to compensate for complexity in the feature space.
- Objective is to do this without training.

Dimensionality - Feature Extraction

- By choosing the projection coefficients to maximize MI under the hypothesis we minimize the deviation of the LRT in the feature space from the LRT in the measurement space

$$
\sum_{i} \log \left(\frac{p_{H_{1}}\left(\left[A_{1}, B_{1}\right]_{i}\right) p_{H_{1}}\left(\left[A_{2}, B_{2}\right]_{i}\right)}{p_{H_{2}}\left(\left[A_{1}, B_{2}\right]_{i}\right) p_{H_{2}}\left(\left[A_{2}, B_{1}\right]_{i}\right)}\right)
$$

$$
\begin{aligned}
& H_{1}: \underset{\alpha_{11}, \alpha_{1}, \beta_{11}, \beta_{21}}{\arg \max }\left[I\left(f\left(A_{1} ; \alpha_{11}\right) ; f\left(B_{1} ; \beta_{11}\right)\right)+\right. \\
& \left.I\left(f\left(A_{2} ; \alpha_{21}\right) ; f\left(B_{2} ; \beta_{21}\right)\right)\right] \\
& H_{2}: \underset{\alpha_{12}, a_{2}, \beta_{12}, \beta_{22}}{\arg \max } I I\left(g\left(A_{1} ; \alpha_{12}\right) ; g\left(B_{2} ; \beta_{22}\right)\right)+ \\
& \left.I\left(g\left(A_{2} ; \alpha_{22}\right) ; g\left(B_{1} ; \beta_{12}\right)\right)\right]
\end{aligned}
$$

$$
\sum_{i} \log \left(\frac{\tilde{p}_{H_{1}}\left(\left[f\left(A_{1} ; \alpha_{11}\right), f\left(B_{1} ; \beta_{11}\right)\right]_{i}\right) \tilde{p}_{H_{1}}\left(\left[f\left(A_{2} ; \alpha_{21}\right), f\left(B_{2} ; \beta_{21}\right)\right]_{i}\right)}{\tilde{p}_{H_{2}}\left(\left[g\left(A_{1} ; \alpha_{12}\right), g\left(B_{2} ; \beta_{22}\right)\right]_{i}\right) \tilde{p}_{H_{2}}\left(\left[g\left(A_{2} ; \alpha_{22}\right), g\left(B_{1} ; \beta_{12}\right)\right]_{i}\right)}\right)
$$

Nonlinear Channel

Received signals are uncorrelated but not independent

Narrowband, Uncorrelated Signals

Signal 1

Signal 2

Sensor A

Sensor B

Feature Space

- Spectra projected down to single scalar value.
- Density estimated in MI optimized feature space.
- MI (data association loglikelihood) computed over feature space.
- Dependence is clear.

Wideband, Uncorrelated Signals

Sensor A

Signal 1

Signal 2

Sensor B

Feature Space

- Association is less obvious for wideband case.
- This is also reflected in MI values.
- Combined score still chooses correct association

$$
0.143(1-1,2-2)>0.102(1-2,2-1)
$$

Dispersive Medium

Both correlation and dependence degrade, but not at the same rate

Dispersive Medium

Information Theoretic Sensor Fusion

Last Year

Maximizing $\mathrm{I}\left(\mathrm{g}_{1} ; \mathrm{f}_{1}\right), \mathrm{I}\left(\mathrm{g}_{2} ; \mathrm{f}_{2}\right)$ and $\mathrm{H}\left(\left[\mathrm{g}_{1}, \mathrm{f}_{1}\right],\left[\mathrm{g}_{2}, \mathrm{f}_{2}\right]\right)$ recovers a representation of the sources up to a permutation (re: data association)

Acoustically Steered Imaging Sensor

- Last time we presented our local fusion approach and justified it statistically.
- Here we focus on an application in the sensor domain considering a single narrow field of view imaging sensor (e.g. IR or video) guided by broad field of view acoustic sensors.

acoustically steered imaging sensor

- Imaging sensor has a narrow field of view, but can be steered.
- Acoustic sensor has little directivity (broad field of view)

acoustically steered imaging sensor

- Use local fusion to derive bearing to source when
- One source is emitting an acoustic signal opportunistic
- Both sources emit acoustic signals simultaneously - local ambiguity

Single source detection

Multi Source Separation

\square

